Knowledge-Based Systems 22 (2009) 279-286

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A blended E-learning experience in a course of object oriented

programming fundamentals

Jaime Galvez *, Eduardo Guzman, Ricardo Conejo

Dpt. of Lenguajes y Ciencias de la Computacion, Bulevar Louis Pasteur, 35, Campus de Teatinos, 29071, Mdlaga, Spain

ARTICLE INFO ABSTRACT

Article history:
Available online 29 January 2009

Keywords:

Blended learning

Assessment for learning

Learning reinforcement
Self-assessment in complex domains
Constraint-based modeling

In this paper, we present a blended e-learning experience consisting of supplying an undergraduate stu-
dent population (in addition to traditional on-site classes) with a learning tool called OOPS (Object Ori-
ented Programming System) and a testing system called SIETTE. OOPS is a problem-solving environment
in which students can resolve Object Oriented Programming exercises. The system applies an assessment
for learning strategy where students are formatively assessed, i.e. OOPS diagnoses their knowledge level
but also generates feedback and hints to help students to understand and overcome their misconceptions
and to reinforce correctly learnt concepts. In conjunction with OOPS, we have used SIETTE, a web-based
assessment system in which students can take tests and teachers can construct them Subsequently, we

have explored whether or not the use of OOPS contributes to improve the students’ knowledge about
Object Oriented Programming.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Intelligent tutoring systems are software solutions which pro-
vide students with personalized and self-paced instruction. These
types of systems use Artificial Intelligence techniques in conjunc-
tion with learning theories obtained from psychological studies
and research done in the educational field. Experts agree that what
constitutes intelligence in intelligent tutoring systems is “real-time
cognitive diagnosis” and “adaptive remediation” [1]. The main goal
of Intelligent Tutoring Systems is to improve the student learning
process. These systems supply an instructional environment which
is adapted to the student’s capabilities and learning needs, promot-
ing even more effective learning than the traditional student-tea-
cher instruction [2].

Even though the most common learning strategy continues to
be face-to-face lessons imparted orally by a teacher, the number
of alternative learning systems has increased. The ideal learning
process is one where students can receive classes, resolve exercises
and obtain immediate feedback from the teacher. Unfortunately,
overcrowding in the classroom makes this desirable situation not
feasible. Nowadays, teachers have to provide instruction to dozens
or even hundreds of students, making it difficult for students to
correctly assimilate the concepts being taught. By adopting learn-
ing systems such as intelligent tutoring systems, teachers could ad-
dress this overcrowding situation using blended learning. This is a

* Corresponding author. Tel.: +34 952 132863; fax: +34 952 131397.
E-mail addresses: jgalvez@lcc.uma.es (J. Gdlvez), guzman@Icc.uma.es
(E. Guzman), conejo@lcc.uma.es (R. Conejo).

0950-7051/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2009.01.004

learning strategy based on incorporating different modes of teach-
ing and learning styles. The aim is to introduce multiple media to
facilitate student-teacher dialogue [3]. Several systems such as
Assistment [4] have been used successfully in blended learning
experiences.

The student overcrowding scenario mentioned above has given
rise to the approach described in this paper. Several teachers pro-
vide instruction to undergraduate students, specifically, studying
advanced programming in the second semester of Telecommunica-
tion Engineering at the University of Malaga (Spain). Around 300
individuals study this course each year. Three teachers are in
charge of introducing students to the concepts of Object Oriented
Programming (OOP). Up to that point, they will have only taken
a course on the basic concepts of imperative programming. Each
teacher provides instruction to two groups of around 50 students
and the course syllabus is very dense. For this reason very limited
classroom time is available for resolving programming problems or
for assisting the students to develop programs. Consequently, from
the last course, we have decided to introduce a blended learning
strategy to facilitate the student learning process. This strategy
consists of supplying the students (in addition to the on-site clas-
ses) with a learning tool called OOPS (Object Oriented Program-
ming System) and access to a testing system called SIETTE.

SIETTE [5] is a web-based assessment system in which students
can take tests and teachers can construct them. In general, the SI-
ETTE tests could be classified in two categories in terms of the
assessment procedure they use, i.e. conventional tests where stu-
dent performance is measured heuristically by means of well-
known criteria such as the percentage of success or the points

mailto:jgalvez@lcc.uma.es
mailto:guzman@lcc.uma.es
mailto:conejo@lcc.uma.es
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

280 J. Gdlvez et al./ Knowledge-Based Systems 22 (2009) 279-286

obtained by totaling the questions answered correctly and sub-
tracting those answered wrongly; and IRT-based tests in which
well-found diagnosis are obtained using a model inspired by the
Item Response Theory [6]. Other test classification criteria depend
on how questions are posed to the student. Two types of tests can
be identified, i.e. adaptive or non-adaptive ones. In the first, ques-
tions are dynamically selected. The goal is to select the most suit-
able question to improve the student’s knowledge diagnosis and
therefore, learning, using the least number of questions.

OOPS is a problem-solving environment in which students can
resolve OOP exercises. The system applies an assessment for learn-
ing strategy, where students are formatively assessed. That is,
0OPS diagnoses their knowledge level but also generates feedback
and hints to help the students to understand and overcome their
misconceptions and to strengthen the concepts they learnt
correctly.

This paper is structured as follows. The next section describes
the notion of assessment of learning and our initial experience in
applying this strategy. Section 3 is devoted to the related work in
programming tutors and in constraint-based modeling. This last
modeling technique is the one which we have used to construct
our domain model. The OOPS system is tackled in detail in Section
4, Section 5 describes the experiment in which we have applied
blended e-learning using OOPS and SIETTE. Finally Section 6 out-
lines the conclusions we have reached with this work and some
future research lines.

2. Background

Conventionally, assessment is used in education to measure and
quantify the evolution of a student’s learning. This is called assess-
ment of learning (or summative assessment). However, assessment
itself can be used as a learning strategy. This is what is called
assessment for learning (or formative assessment), a process in which
assessment is used in the classroom to improve student perfor-
mance. It is based on the idea that students progress better when
they understand their current state, the objectives of their learning,
and how they can best achieve these objectives [7]. In the litera-
ture, we can find several studies showing that the application of
this learning strategy leads to improvements in students’ results
[8].

We have previous experience in the application of blended
learning strategies based on assessment for learning procedures
using our system SIETTE. In [9], we explore the use of hints and
feedback in self-assessment tests for a course of Language Proces-
sors (the goal being that students learn the most important issues
about compiler construction) in the first semester of the 2004/
2005 academic year. Accordingly, 57 students were administered
a self-assessment test where each question was supplied with
hints, to assist in understanding its stem, and feedback, revealed
once the correction was shown. This test was administered after
some face-to-face lessons given by the course teacher. The results
suggested that those students who voluntarily took a self-assess-
ment test with hints and feedbacks improved their overall mark.

Additionally, in other experiment [10], a different kind of test
was used, i.e. open tests where students could take a test during
a given time period but only the score and not the correction
was shown. Once the time period expired, the test correction
was shown to the students. Our aim was to establish whether we
could use a testing system in a similar way to a drill-and-practice
approach. We tested this type of test with the undergraduate stu-
dents of a course of Artificial Intelligence and Knowledge Engineer-
ing and student data from three consecutive academic years was
analyzed, i.e. between 2003 and 2006. Only in the last year was
the open test made available to students. We compared the results

of this experience with samples from the previous years and the
evidence suggested that the open test could help students to im-
prove their performance in the final exam.

The two results described above suggest that the use of self-
assessment tests could contribute to improving student proficiency
and therefore enhance learning. However, for complex domains, the
use of testing is more difficult since a testing session would require
an extremely large number of questions. This makes this kind of
assessment exhausting from the student’s perspective and an ardu-
ous task for teachers who would have to elaborate a huge set of
questions. This is one of the main reasons which have inspired us
to develop OOPS. Our goal is to present the students with a few
problems but enough to be used instead of a self-assessment test
and with analogous pedagogical efficacy.

3. Related work

Nowadays the advantages offered by Web technologies such as
ubiquity or platform independence make them a useful way of
facilitating the dissemination and the use of educational systems.
As pointed out in [11], there are many Web-based systems avail-
able for educational purposes, however, this section focuses only
on those using Constraint-Based Modeling (CBM) or OO paradigm
tutoring systems.

3.1. Constraint-based modeling

This type of student modeling is based on Ohlsson’s theory of
learning from errors [12]. The technique proposes that students
can learn from the feedback generated as the result of an error.
According to this technique, the domain includes some basic prin-
ciples which should be supported by all the solutions. In other
words, these principles are a series of constraints that cannot be
violated by any solution. Therefore, the relevance of the CBM does
not depend on the steps the student follows, but rather on the type
of solution that he/she finally produces. Another advantage of CBM
is its computational simplicity, since the student model is reduced
to a pattern matching process that will be explained in more detail
below.

Within the user modeling research community, the Intelligent
Computer Tutoring Group (ICTG) of Tanya Mitrovic has led the re-
search on CBM. This group has developed a wide variety of tutoring
systems which must be used as an indispensable point of refer-
ence: SQL-tutor [13], which is centered on the database domain;
KERMIT (Knowledge-based Entity Relationship Modeling Intelli-
gent Tutor) [14], whose goal is to teach database conceptual design
by means of the model. The group has also developed some other
tutors such as Normit [15] or Capit [16], and two authoring tools to
facilitate the construction of tutors, such as WETAS (Web-Enabled
Tutor Authoring Shell) [17], which provides student modeling,
administration and automatic interface generation; and ASPIRE
(Authoring System for Developing Constraint-Based tutors) [18]
which works with an ontology of the system, providing automatic
constraint generation. Using the previously mentioned tutors,
Mitrovic et al. [19] have demonstrated that CBM is a efficient ap-
proach for student modeling.

3.2. Programming tutors

There exist several tutors whose goal is to teach programming
concepts in different languages [20]. Perhaps the most popular
ones are the family of ACT tutors [21-23], which are intelligent tu-
tors for learning Pascal, Lisp or Prolog programming languages.
These tutors use an approach called Model Tracing and use expert
rules like those in CBM. Nonetheless, this approach is centered

J. Gdlvez et al./ Knowledge-Based Systems 22 (2009) 279-286 281

on the steps the student performs in order to arrive at a certain
solution, instead of using the final state of a solution.

Inside the OO paradigm, there is a reduced number of tutors.
ViRPlay [24] is centered on interactions in programs written in
Java. This system tries to teach the execution of a program, using
role-play simulations in a virtual 3D environment. However, the
system seems to have neither a student model nor adaptive strat-
egies. SmallTutor [25,26] is situated in the domain of OO programs
written in Smalltalk. This system adapts the instruction using Al-
planning techniques, according to a series of concepts that stu-
dents must learn and a students must learn and a prerequisites
graph. In [27] used but in this case to describe the problem appli-
cation domain. This work proposes a generic architecture for intel-
ligent programming tutors and focuses on inducing solutions to
object oriented programs using a genetic programming technique.
Although these approaches focus on different aspects of the OO
Paradigm, none of them use the CBM. In the literature, we have
only found one CBM-based tutor for learning object oriented con-
cepts: COLLECT-UML [28] which can issues using UML.

4. The OOPS tutor

OOPS (Object Oriented Programming System) is a tutor which
separates the functionality into four outstanding parts: (a) an inter-
face, through which the students can solve problems in an easy to
use workspace and teachers can elicit problems; (b) a rule-based
domain model, which contains the representation of knowledge
to be taught; (c) the mastery of a student in the topic is collected
in the student model, which is used to adapt the learning process
to his/her needs; (d) finally, the pedagogical module establishes
the learning strategies and carries out the pedagogical tasks.

Our system allows teachers to add new problems using an
authoring tool. For each problem, the teacher has to give its stem
and should build what would be the correct solution to that prob-
lem in the same way as a student would do. In addition, using this
authoring tool, problems and domain expert knowledge can be
managed. From the students’ perspective, the system has two
working modes. In the first, hereafter referred to as the guided
mode, students can resolve problems created by teachers for
assessment purposes. OOPS sequences those problems adapting
to every estimated user level. In the second mode, called free mode,
students are allowed to use the system as a drill-and-practice envi-
ronment; that is, solving their own exercises to check their knowl-
edge or to resolve doubts.

4.1. The interface

This part of the system is the communication channel between
the user and OOPS. Here, the system gets the representation of a
solution and delivers appropriate problems, information and feed-
back. The students must apply their knowledge in order to create a
solution for a given problem. This solution must be an OO program
written using a pseudo-language, which has been created by the
teachers of the programming courses of the Telecommunication
Engineering degree at the University of Malaga.

Although OOPS only uses a subset of the whole language, it is
enough to cover the main concepts of the OO paradigm. It should
be observed that a program in this pseudo-language is formed by
two modules: interface and implementation. The interface con-
tains the public definition of the class without implementation
code, and the implementation module contains the code of all
these methods and other private content such as the attributes.

The interface allows OO programs to be built by means of a
drag-and-drop mechanism, limiting the actions that can be done
in the system and focusing users’ thoughts on the solving process
instead of writing source code. This strategy permits the system

‘00PS: TUTOR DE PROGRAMACION ORIENTADA A OBJETO!

Disefiar una clase que represente 3 un punto geométrico, el cual se define mediante SUS Co0rdenadas ™ &y
Proporcionar también &l método transportar(E Zx E Zy)

Interfaz | Implementacién |

e -Area do Trabaj
(varios |
[Sentencias IMPLEMENTACION CLASE Punto
| Declaraciones P—
Clase & | Anadir un nuevo método
|t y =
| ? Tipo devuelto: ;
e [NEYODOS L! [Tipocadena =
] Crear) E
| Cavecera NICIO Nombre:
r 1 x=0 [acadena
Atributo y=0 =
| 0
Variable FIN Crear Wl —
a Aok |
Fin Punto Direccion: r =]
Entrada (B) I+]
Tipo:
-
L " | TipoCadena [+
o] Lomene |

Fig. 1. Interface look of OOPS working in guided mode.

to trace all the actions performed by the students and accordingly
facilitates the adaptation which can be provided by the system. As
can be seen in Fig. 1, there are three main regions within the
interface:

e The stem, situated at the top, is the problem description written
by the teacher.

e A toolbar, on the left side (labeled “Herramientas”), organized
into three tabs with every element that can be used to build a
program, i.e. sentences, declarations and others. Declaration ele-
ments (the tab labeled “Declaraciones”) are classes, attributes,
methods, variables, etc. Sentences (the “Sentencias” tab) are
expressions that allow defining, modifying and using objects
such as assignations, arithmetic operators, method calls, etc.
The remaining tab, i.e. the one labeled “Varios”, contains actions
that can be required to develop the solution. For example, to
eliminate elements or compile programs. It is worth emphasiz-
ing that the two first tabs incorporate a button for each element
and they can be used by dragging the button and dropping it
into the workspace.

e The workspace, where the code of a solution program is con-
structed and edited. This area has two tabs labeled “Interfaz”
and “Implementacién” for both parts of a class, i.e. the interface
and the implementation modules respectively. Each element the
user wants to use is dragged from the tool bar into this work-
space. When adding an element to the public or private part,
some additional information such as names, types, parameters,
etc. is requested.

At every moment during the problem-solving process, the
whole set of expressions available in the domain model is available
to the student. The use of some of these expressions will result in
the wrong solution and the use of others will produce the right one,
allowing the system to evaluate whether the student’s actions are
correct or not. The environment also acts as a compiler allowing
users to know whether his/her solution is syntactically correct or
not. When the compilation button is pressed, the system shows a
list of all violated constraints (see Fig. 2) and related feedback,
which will either be quite specific or more general depending on
the estimated level of the student.

4.2. Rule-based domain model

The domain of OO Programming is very complex. There is no
fixed sequence of actions that will leads to the solution, nor is there

282 J. Gdlvez et al./ Knowledge-Based Systems 22 (2009) 279-286

00PS: TUTOR DE PROGRAMACION ORIENTADA A OBJETO!
| iado =

Disefiar una clase que represente a un punio geométrico, & cual se define mediante sus coordenadas ™" & "y
Proporcionar también el método transportar(E Zx, E Zy).

(“interfaz | Implementacién |

] Area de Trabaj
ey IMPLEMENTACION CLASE Punto
Declaraciones AYREUTOS
= x Lista de enores =
Eliminar zy
r = @ |t método aCadena debe de devolver un resu...
Corregir METODOS La clase Punito debe de declarar al menos u...
h Crear() El método de la interfaz debe estar implemen...
Terminar INICIO |
— = ERROR DE COMPILACION
Afiadit y=9
T 4 Elmétodo aCadena debe de devover
FIN Crear un resultado
Tpacadens scadenad =
INICIO
FIN aCadena
Fin Punto

Fig. 2. A set of feedbacks shown by OOPS.

only one solution for a given problem. Indeed, there are an infinite
number of sequences/combinations which will lead the user to a
valid solution. The use of CBM is useful for handling the wide space
of solutions since it works with the final solution, separately of all
possible steps to reach that solution.

According to CBM, what are important in the domain are those
general principles that every OO program will support. These prin-
ciples are represented by constraints that cannot be violated by
any program. Ohlsson postulates that a constraint is a pair (C,Cs),
where C; is the relevance condition and C; is the satisfaction condi-
tion. G, is used to identify which will be the state of the problem to
be satisfied, and Cs is what it is that the problem cannot violate. In
our domain, an example would be the following: C,= “exist an
assignation element” and C; = “types associated on both sides of
the assignation must be equal”. At the same time, constraints are
encoded by rules of the form: IF C, is satisfied, THEN C; should also
be satisfied; otherwise a principle is being violated. In summary, the
domain model consists of a set of rules representing general prin-
ciples that must not be broken.

We have modeled the domain of OOPS as CLIPS inference rules,
where the antecedent of the rule is formed by a combination of the
C; and C; condition, and the consequent is in charge of throwing an
error with the information related to a violated rule. This error will
be captured by the system, showing the corresponding feedback to
the user. Inference rules have been written in collaboration with
experts in the subject matter. A total amount of 86 rules have been
identified and grouped into six different categories (see Table 1).

The rule-based domain is stored in a knowledge base, which
facilitates their management by the teachers. Indeed, the system
has a rule management module which allows rules to be modified

Interface Module I Implementation Module
ClassC
Attribute Attribute
Al A2
T R —
Method M1 | ILEER Method M1
. (Header) |
Returned || Param Returned | Param || Assignation)
. type || P1 || type P1 A2=P1

Fig. 3. Example of Hierarchical structure of OOPS generated facts.

and deleted easily. In addition to coding general principles in the
domain, an appropriate representation of the program being devel-
oped is needed in order to check whether the goals are being sat-
isfied or not, i.e. to evaluate the student mastery of the basic OOP
concepts from the actions carried out. This representation is done
in a declarative way and it consists of a series of facts that are asso-
ciated with every element used in a solution. Hence, to determine
the correctness of the student’s final solution, the system matches
the facts representing the student’s solution with the facts repre-
senting the teacher’s solution and applies a set of correspondence
rules.

While the user is constructing a program, every action he/she
carries out in the developing environment involves modifying the
set of facts representing the solution. Every element in the code
has an associated fact, which can be related to others. These rela-
tions are defined depending on the place where an element is situ-
ated in the code, forming a hierarchical structure. For example (see
Fig. 3), knowing that the main element in the solution is a class
composed of its interface and implementation modules, a reference
should exist between the fact associated with the class and every
fact corresponding to each element inside this class (methods,
attributes and others). In the same way, every method will main-
tain a relation with every parameter or sentence declared inside
it. In the figure we can also see an indirect relationship between
the declaration of a method in the interface module and its corre-
sponding implementation method. Summing up, a solution for a gi-
ven problem is composed of a set of related facts that are added
dynamically according to the actions carried out in the interface.

Facts used by the system are defined by CLIPS templates, which
also define indirectly the corresponding elements in the code. That
is, every element (class, method, attribute, sentence, etc.) will have
a template associated. A template has a set of fields which deter-
mine the content necessary for every element. Some of these fields
are common to all templates, such as an identifier, the template

Table 1
Rules categories of OOPS domain model.
Rule category Description Number
of
rules
Types Try to search incoherencies among the types of expressions like method calls, arithmetic operators, etc. 10
Syntax Related to syntactic errors and infraction of grammar rules 14
Modules Check out the correspondence between elements in the interface (or public part) of a class and elements situated in the private part, such as 6
correspondences implementation of a specific header defined in the interface
Visibility Deal with errors derived from ignorance of the ambit rules of classes, methods, variables, parameters, etc. 15

Format of names

Principles related to the names of local variables, methods, etc. such as redefinition errors. Here are included redefining errors and code 28

conventions such as uppercase at the beginning of a class name and other naming rules in order to aim the student using this well-practice

Missing references

Errors that may take place as consequence of code elimination. That happens, when a student removes the declaration of some variable, 13

attribute or method which was used in the code and then, a reference remains to an element that no longer exists

J. Gdlvez et al./ Knowledge-Based Systems 22 (2009) 279-286 283

name, a reference to the template where the element associated to
this template is being used, and information about relationships
with others elements in the code. We distinguish three different
kinds of facts:

e Pre-defined facts, which are those associated with elements pre-
defined in an 0.0. program, such as basic types (Real, Integer,
String, etc.) and pre-defined methods (for example, print).

e Facts given by the teacher, which are associated with elements
that the teacher provides to students in order to facilitate the
resolution of a specific problem. For instance, an algorithm
which accomplishes a certain task.

e Facts corresponding to the solution being built, which are added,
deleted or modified depending on the actions carried out
through the interface.

4.3. The student model

OOPS keeps a model which estimates the student’s knowledge
level and also traces his/her actions. Using this model, the system
can adapt the toolbar elements and the feedback shown thereby
providing individualized instruction. The model is built while the
student is working on solving problems. The system gathers rele-
vant information, then stores, and updates the model using new
evidence. According to CBM, the elaboration of a student model
is an extremely simple task: it is composed of a list that contains
every constraint violated by a student. In this way, the facts taken
from every action done during the solving process are checked
against the rules defined for the domain model. This is done by
the pedagogical module and the pattern matching mechanism that
is explained below.

In OOPS, the student model mainly consists of two elements, i.e.
the list of violated constraints, and pairs of numerical values be-
tween 0 and 10, expressing the student’s estimated level. These
estimations are obtained and updated by the pedagogical module
from the evidence generated by the student and the violated con-
straints. These values are used to adapt the instructional content
presented to every student, which is done according to three inter-
vals of equal length over the possible values where feedback and
other presentation information are categorized. The information
selected will depend on the category of the numerical value (low,
medium or high level).

4.4, Pedagogical module

The pedagogical module is the core of the tutor since the whole
system depends on it: material is presented and the evaluation is
done here. Two outstanding pedagogical tasks, competence of ped-
agogical module, are: problem-solving assistance and curriculum
sequencing.

4.4.1. Problem-solving assistance

Ohlsson [29] points out that learning from errors, the major
principle of CBM, is a process consisting of two parts, error recog-
nition and error correction. Psychological evidence indicates that
feedback obtained immediately after an error is the most effective
pedagogical action [13]. Feedback consists of pieces of knowledge
that helps students to eliminate misconceptions or learn concepts
previously unknown. There are two types of feedback [30]: (1) neg-
ative feedback, used to correct a wrong answer (e.g., a justification
about why the answer is wrong) and (2) positive feedback, given to
reinforce a correct answer. OOPS tries to assist users while they are
practising their knowledge in order to detect misconceptions and
to reinforce the concepts learnt correctly. Assistance occurs every
time the user compiles the solution. The identification of errors

is done using the domain rules and the facts representing the stu-
dent’s solution. For this purpose, a rule inference engine is needed.
Specifically, JESS (Java Expert System Shell) [31] has been used in
OOPS. It has a work memory where all rules and facts are loaded
and it throws the corresponding errors when a rule is violated.
The error thrown contains information for each of the three levels
(low, medium, high). Only one of these feedbacks will be shown. It
will be the one corresponding to the estimated level taken from the
student’s individual model. The lower the level, the more detailed
the feedback shown will be, in order to allow the student to realize
and correct their error.

4.4.2. Curriculum sequencing

The pedagogical module adapts the curriculum sequencing or
instructional planning to provide a suitable level of difficulty to
the students. It also uses the estimated level from the student
model and additional information: the score for every rule and
the estimated difficulty of a problem.

The score of a given rule represents a quantitative estimation of an
error committed when that rule is violated. It is a value situated in-
side one of three intervals distributed between 0 and 10 (non-rele-
vant, medium, and severe). This value will have been initially
assigned by the teachers according to their expert criteria, and is up-
dated with every compilation using a heuristic that compares the
rule score with the average value for all rules. The score S,(t + 1) of
rule r after the t + 1 compilation can be expressed as in Eq. (1):

0
S()

s LiaSilt)
S(0) == (2)

In this equation ¢ is the average value of the category where the
rule is placed (i.e. 1.65 if the rule is not important, 5 if medium, and
8.35 if severe. S(t) is computed using Eq. (2), where N is the total
number of rules.

The estimated difficulty of a problem is also represented with a
value in the interval (0, 10] and it is updated when a compilation is
done. It is worth noticing that repeated errors in successive compi-
lations are not taken into account in order to avoid accumulation of
errors. The heuristic formula (Eq. (3)) compares the average score
of the problem for all students (Eq. (4)) with the mean (o) of all
problems score (Eq. (5)). Notation meaning is as follows: p is the
problem matter; D, is the difficulty of the problem; S,; is the score
of the student i in the problem p; T is the number of students; and P
is the number of problems in the system

Si(t+1)=S.(t) - (1)

_b
Dy =75 3)
= YI.S,i
P, = it @)
>iaPi
== (5)

Once these parameters are determined, it is necessary to adjust
the choice of a problem to the student’s estimated level and their
specific weaknesses. The system tries to find problems with the
same level the student has (low, medium, or high), ordered from
lowest to highest (using Dp). If no problem has been found for this
level, the problem with the subsequent nearest difficulty (belong-
ing to other intervals) is chosen.

5. Experimental evaluation

This blended e-learning experience was incorporated into a
course of advanced programming called Programming Elements
taught during the second semester (approximately 14 weeks with

284 J. Gdlvez et al./ Knowledge-Based Systems 22 (2009) 279-286

1. Data Abstraction Introduction
1.1. Data Abstraction and Object Oriented Programming
1.2. Basic concepts of Object Oriented Programming
1.3. Advanced concepts of Object Oriented Programming
2. Linear Abstract Data Types
2.1 Concept of Abstract Data Type (ADT)
2.2. Stack: Definition, Examples and Implementation
2.3. Queue: Definition, Examples and Implementation
2.4. Positional List: Definition, Examples and Implementation
3. Dynamic Memory
3.1. Physical Management of Dynamic Memory
3.2. Pointers
3.3. Linked Lists
3.4. Classes and Dynamic Memory
3.5. Dynamic Implementations of ADTs
4, Recursivity
4.1. Concept
4.2. Physical Implementation
4.3. Use and Examples
5. Non-linear ADTs
5.1. Binary Trees: Definition, Examples and Implementation

Fig. 4. Curriculum of the course.

only 2 h per week) in the Telecommunications Technical Engineer-
ing School of the University of Malaga (Spain). Fig. 4 illustrates the
course curriculum. To pass the course, the students must assimi-
late correctly the concept of data abstraction and how it is imple-
mented using an OOP language. These notions are introduced in
topic 1, as can be seen in Fig. 4, and are vital for the students, since
the rest of the course is based on them. The implementation of the
Abstract Data Types (approached in topics 2, 3 and 5) is accom-
plished using OOP.

The pedagogical strategies applied in this course are based on
face-to-face classes. These classes are theoretical, and teachers
introduce the concepts the student should assimilate. At the end
of each lesson, students are given a set of exercises which should
be solved at home. In practical classes, the teachers solve those
problems using the dashboard on the students’ request. This last
strategy has been proved quite ineffective, judging from the stu-
dent failure rate. At the end of the semester, the students have to
pass a test and a programming problem exam. The test assesses
the theoretical concepts taught during the semester and represents
30% of the final score (3 points) where each student must obtain at
least 1.5 points. Otherwise the exam is not corrected by the teacher
and the student automatically fails. Results obtained at the end of
each course, illustrate that this strategy is not adequate. The failure
rate is considerably high and, according to the teachers, students
have some important misconceptions about data abstraction from
the beginning of the semester, probably making it very difficult for
them to follow the course.

The ideal situation would be individual correction of students’
solutions to the problem proposed during the semester in order
to identify misconceptions and to apply appropriate feedback.
Unfortunately, this is not feasible from the teacher’s point of view
due to the large number of students. To improve these negative re-
sults, we took a first step towards blended e-learning. At the end of
the semester we applied the technique of making open tests avail-
able to the students. For a limited period they could try the open
test but could not see the correction until the end of the time per-
iod allowed. The results of this academic year were encouraging:
the number of students who took the final exam and passed was
74%, compared with 49% of the previous year. Taking all the stu-
dents registered on this course, this percentage was 23% versus
14% of the previous year. However, the percentage of students
who sat the final exam was only 31% whereas the previous year
it had been 30%. As can be seen, despite this good result, the overall
percentage of students who took the exam is still very small. The
course teachers consider that this is probably due to the students’

difficulties in assimilating the OO paradigm from the beginning of
the semester.

5.1. Study design

To address this issue, we have decided this year to extend the
blended learning-based strategy. We have developed OOPS to de-
tect and correct misconceptions about OOP fundamentals. Problems
in this system must be coded in a programming pseudo-language
created by the course teachers. Nevertheless, any domain involving
programming is complex from the point of view of monitoring the
student actions. In the OOPS design, we have preferred not to use
strategies such as scaffolding, since we consider that this limits
the student actions while solving a problem. We have preferred in-
stead to give the student freedom to do any kind of action and mon-
itor them by means of a visual interface (based on drag-and-drop
operations). Therefore the student does not code any instruction;
he/she uses a tool bar to introduce sentences and other parts of
the definition and implementation of a programming class.

After the lesson introducing OOP, i.e. about 6 h, we prepared a
special session. This session took place in the labs of the school
and was composed of three parts:

(1) It began with a pre-test administered through SIETTE. This
test was composed of 15 multiple-choice questions where
each question had three choices (only one of them was cor-
rect). Moreover, the students could leave any question blank.
They also had a time limit of 15 min to complete the test.
The test assessed all the concepts related to the data
abstraction.
Once they had finished the test, students had to solve prob-
lems using OOPS. These problems were similar to those
included in the list of problems given by the teachers. Each
problem consisted of constructing the public and private
parts of a class with certain characteristics. The students
had to determine and define the class attributes and the
methods associated to it. The students had also to declare
the public methods in the class interface. OOPS gave the stu-
dent feedback on demand. Therefore, while the students
were constructing their classes, they could push a button
and the system indicated the number of errors they had
and the reasons for those errors.

(3) After interacting with OOPS, students were administered a
post-test similar to the pre-test, which was also adminis-
tered using SIETTE. Our goal was to explore the improve-
ment in learning experienced by the students after their
interaction with OOPS. The format of the test was the same
as in the pre-test, that is, 15 multiple-choice questions of
three choices and a time limit of 15 min.

—
N
—

We also had a control group who only took the 6 h face-to-face
classes but these neither worked with OOPS nor took the pre-test.
This sample group was only administered the post-test. The crite-
ria we used to divide the students into these two groups were
established according to the academic groups each individual be-
longed to. Finally note that the score of both tests was expressed
in terms of percentages, i.e. between 0 and 100. The cut off was
50%, that is, students who obtained a score equal to or greater than
50% passed the test.

5.2. Data analysis and results

A total of 47 students participated in this experiment. 29 indi-
viduals formed the experimental group, i.e. the group who accom-
plished the three steps of the experiment described above. The
control group (of 18 students) was only administered the post-test.

J. Gdlvez et al./ Knowledge-Based Systems 22 (2009) 279-286 285

zzl:rllgexzrison of the pre-test and post-test results between experimental and control groups.
Number of students Students who passed (%) Mean Std. Dev.
Experimental group Pre-test 29 48% 43,79 21.94
Post-test 81% 55.24 25.22
Control Group Post-test 18 61% 44.32 26.68

Post-test
40

T \ T T T
0 20 40 60 80

Pre-test

Fig. 5. Scatterplot comparing the performance of the experimental group individ-
uals between the pre-test and the post-test.

Table 2 summarizes the results of both groups. The first two rows
represent the data of the experimental group in the pre-test (first
row) and in the post-test (second row). The last row contains the
information regarding the control group. The third column shows
the number of individuals who took each test and the fourth the
percentage of them who passed the test (score equal to or greater
than 50%). The last two columns contain the mean score of each
sample and its standard deviation, respectively. As can be seen,
the results suggest that even though the increase of the sample
mean for the experimental group was not very high (12.70%), the
percentage of students who passed each test increased from 48%
to 81%.

We also performed a statistical analysis to see whether the re-
sults between the experimental pre-test group and the control
group tests were similar or not. For this purpose, we used the clas-
sical statistical hypothesis test (i.e. the independent one-tailed t-
test). The results suggest that we cannot reject the null hypothesis
which states that the means of the two samples are different,
(p > 0.8223) with 95% confidence. Furthermore, we made a pair-
wise comparison to determine whether the experimental group
students increased their performance after working with OOPS or
not. To this end we performed a paired t-test comparing the pre-
test and the post-test performances of each individual. The goal
was to find out if the difference between the performances of each
student in both tests was statistically significant. The evidence sug-
gests that we can reject the null hypothesis (which states that the
mean of each individual before and after using OOPS is similar)
with p < 0.009115 with 95% confidence. Fig. 5 illustrates the paired
relationship using a scatterplot. It can be observed that most of the
students improved their score between the pre- and the post-test.

6. Conclusions and further research

The main goal of this work was to try to improve the success
rate of students enrolled on the Programming Elements course.
To this end we have used strategies based on blended e-learning.
In addition to the face-to-face classes (theoretical and practical
classes) we have used two different e-learning systems: SIETTE, a

web-based assessment system used to administer two similar
tests; and OOPS, a problem-solving environment. The aim was to
explore the contribution of OOPS for improving students’ knowl-
edge. To this end, OOPS presents the student with different prob-
lems and provides feedback during the process. Thus, the
learning process is personalized and adapted to the student needs.
This adaptation is done by means of a set of inference rules created
by experts in the field and taking as input the student model and
the performances of previous students who tackled the same prob-
lem in OOPS. Hints and feedback are adapted to the student’s
knowledge estimation. Thus this system is able to reinforce the
student’s weak points, thereby providing a very useful comple-
ment to the classes of Programming Elements. In this sense, the
main strength of OOPS compared to the open tests we used in pre-
vious experiences is that with only a few exercises we can obtain
more (or at least the same amount of) evidence about the student’s
knowledge as was obtained in those tests which contained many
questions. Moreover, OOPS also provides tools for teachers to ana-
lyze the student’s sessions, to add and modify new problems and to
manage the rules, hints and feedback. The experiments we per-
formed suggest an improved student performance after using
OOPS. However, we still have to explore the influence of this
improvement on the final score of the course which will take place
in July 2008.

Despite already using this tool with real students, there is much
work to do. OOPS only focuses on those concepts related to data
abstraction. However, we would like to extend it to include new
kinds of sentences, for instance, selection and/or iteration. For this
purpose we should identify and add the constraints needed to
model these sentences. The main problem is that this extension
makes it much more difficult to determine whether or not the stu-
dent’s solution is correct. In addition, during the experiment, stu-
dents pointed out several improvements from the usability point
of view, which we will take into account in future versions of OOPS.

References

[1] V. Shute,]. Psotka, Intelligent tutoring systems: past, present, and future, in:
David H. Jonassen (Ed.), Handbook of Research for Educational
Communications and Technology, MacMillan, New York, 1996, pp. 570-600.
Chapter 19.

[2] B.S. Bloom, The 2-sigma problem: the search for methods of group instruction
as effective as one-to-one tutoring, Educational Researcher 13 (1984) 4-16.

[3] A. Heinze, C. Procter, Online communication and information technology
education, Journal of Information Technology Education 5 (2006) 235-249.

[4] L. Razzaq, M. Feng, N. Heffernan, K. Koedinger, G. Nuzzo-Jones, B. Junker, M.A.
Macasek, K.P. Rasmussen, T.E. Turner, J.A. Walonoski, Blending assessment and
instructional assistance, in: Intelligent Educational Machines within the
Intelligent Systems Engineering Book Series, Springer, Berlin, 2007, pp. 23-49.

[5] R. Conejo, E. Guzman, E. Millan, M. Trella, J.L. Pérez de la Cruz, A. Rios, SIETTE: a
web-based tool for adaptive testing, Journal of Artificial Intelligence in
Education 14 (1) (2004) 29-61.

[6] E. Guzman, R. Conejo, J.L. Pérez-de-la-Cruz, Adaptive testing for hierarchical
student models, User Modeling and User-Adapted Interaction 17 (1) (2007)
119-157.

[7] Assessment Reform Group, Assessment for learning: 10 principles - research-
based principles to guide classroom practice, qualifications and curriculum
authority, United Kingdom. <http://www.qca.org.uk/qca_4334.aspx>, 2002
(accessed January 2009).

[8] P. Black, C. Harrison, C. Lee, B. Marshall, D. William, Assessment for Learning:
Putting It into Practice, Open University Press, United Kingdom, 2003.

[9] E. Guzman, R. Conejo, Self-assessment in a feasible, adaptive web-based
testing system, IEEE Transactions on Education 48 (4) (2005) 688-695.

http://www.qca.org.uk/qca_4334.aspx

286 J. Gdlvez et al./ Knowledge-Based Systems 22 (2009) 279-286

[10] E. Guzman, R. Conejo,].L. Pérez-de-la-Cruz, Improving student performance
using self-assessment tests, IEEE Intelligent Systems 22 (2007) 46-52.

[11] P. Brusilovsky, Adaptive and intelligent technologies for web-based education,
KI - Kunstliche Intelligenz 13 (1999) 19-25.

[12] S. Ohlsson, Constraint-based Student Modeling, Student Modelling: the Key to
Individualized Knowledge-based Instruction, Springer, Berlin, 1994, pp. 167-
189.

[13] A. Mitrovic, B. Martin, M. Mayo, Using evaluation to shape its design: results
and experiences with SQL-tutor, User Modeling and User-Adapted Interaction
12 (2002) 243-279.

[14] P. Suraweera, A. Mitrovic, Kermit: a constraint-based tutor for database
modeling, Proceedings of Intelligent Tutoring Systems 2363 (2002) 377-387.

[15] A. Mitrovic, NORMIT: a Web-enabled tutor for database normalization,
Proceedings of ICCE’02 International Conference on Computers in Education
2 (2002) 1276-1280.

[16] M. Mayo, A. Mitrovic,]. McKenzie, CAPIT: an intelligent tutoring system for
capitalization and punctuation, in: Proceedings of IWALT'00, International
Workshop on Advanced Learning Technologies, 2000, pp. 151-154.

[17] B. Martin, A. Mitrovic, Domain Modeling: Art or Science?, in: Proceedings of
AIED’03, 11th International Conference on Artificial Intelligence in Education,
2003, pp. 183-190.

[18] A. Mitrovic, P. Suraweera, B. Martin, K. Zakharov, N. Milik, J. Holland, Authoring
constraint-based tutors in ASPIRE, Proceedings of Intelligent Tutoring Systems,
4053 (2006) 41-50.

[19] A. Mitrovic, M. Mayo, P. Suraweera, B. Martin, Constraint-based Tutors: A
Success Story, in: Proceedings of IEA/AIE’01, 14th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert
systems, 2001, pp. 931-940.

[20] M. Gémez-Albarran, The teaching and learning of programming: a survey of
supporting software tools, The Computer Journal 48 (2) (2005) 130-144.

[21] A.T. Corbett,].R. Anderson, Student modeling in an intelligent programming
tutor, in: E. Lemut, B. du Boulay, G. Dettori (Eds.), Cognitive Models and

Intelligent Environments for Learning Programming, Springer Verlag, New
York, 1993, pp. 135-144.

[22] AT. Corbett, J.R. Anderson, A.T. O'Brien, Student modeling in the ACT
programming tutor, in: P. Nichols, S. Chipman, B. Brennan (Eds.), Cognitively
Diagnostic Assessment, Erlbaum, New Jersey, 1995, pp. 19-41.

[23] AT. Corbett, A. Bhatnagar, Student modeling in the act programming tutor:
adjusting a procedural learning model with declarative knowledge, in:
Proceedings of the Sixth International Conference on User Modeling, 1997,
pp. 243-254.

[24] G. Jiménez-Diaz, M. Gémez-Albarran, M.A. Gémez-Martin, P.A. Gonzilez-
Calero, ViRPlay: playing roles to understand dynamic behavior, in: Workshop
on Pedagogies and Tools for the Teaching and Learning of Object Oriented
Concepts, 2005.

[25] 1. Morschel, SmallTutor - an intelligent tutoring system for object-oriented-
programming, in: Proceedings of Mobus 1993, pp. 19-25.

[26] A. Zekl, I. Morschel, Embedding authoring support in an ITS for the learning of
object-oriented programming, in: Proceedings of IEEE First International
Conference on Multi-Media Engineering Education, Australia, 1994, pp. 59-64.

[27] N. Pillay, A generic architecture for the development of intelligent
programming tutors, International Journal of Continuing Lifelong Learning
10 (2000) 275-285.

[28] N. Baghaei, A collaborative constraint-based adaptive system for learning
object-oriented analysis and design using UML, in: Proceedings of Adaptive
Hypermedia and Adaptive Web-Based Systems, Springer, Berlin, 2006, pp.
398-403.

[29] S. Ohlsson, Learning from performance errors, Psychological Review 103 (2)
(1996) 241-262.

[30] R. Conejo, E. Guzman,].L. Pérez-de-la-Cruz, Towards a computational theory of
learning in an adaptive testing environment, in: Proceedings of AIED'03 11th
International Conference on Artificial Intelligence in Education, 2003, pp. 398-
400.

[31] EJ. Friedman-Hill, JESS, The Java Expert System Shell, SAND-98-8206, 1997.

	A blended E-learning experience in a course of object oriented programming fundamentals
	Introduction
	Background
	Related work
	Constraint-based modeling
	Programming tutors

	The OOPS tutor
	The interface
	Rule-based domain model
	The student model
	Pedagogical module
	Problem-solving assistance
	Curriculum sequencing

	Experimental evaluation
	Study design
	Data analysis and results

	Conclusions and further research
	References

