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Testing is the most generic and perhaps most widely used mechanism for student

assessment. Most tests are based on the Classical Test Theory,1 which says that

a student’s score is the sum of the scores obtained in all questions plus some kind of

error. This theory, although simple to apply, has many limitations. The most relevant is

that the student test result depends heavily on the indi-
vidual’s learning preferences or abilities and also on
the actual test’s format. According to this theory, tests
aren’t necessarily useful in intelligent educational
systems, which require accurately obtaining the stu-
dent’s knowledge state to guide the learning process.

Yet the Web has created a new generation of intel-
ligent systems—Adaptive Hypermedia Systems—
which offer new types of instructional interaction.
Educational AHSs adapt the learning process on the
basis of the student’s learning preferences, knowledge,
and availability. One such Web-based tool is SIETTE

(the system of intelligent evaluation using tests),
which infers student knowledge using adaptive testing.

We conducted two empirical studies of SIETTE over
four academic years for two courses: one on the Lisp
programming language and another on language
processors. Here we explore whether SIETTE’s self-
assessment tests improved student performance on
the final exams.

SIETTE: An adaptive testing system
In the late ’90s, we and several of our colleagues

created SIETTE (www.lcc.uma.es/siette).2 This year,
we released the system’s third version, which provides
new functionalities for both teachers and students.

Teachers at the University of Málaga, the Poly-
technic University of Madrid, and the Spanish Open
University currently use SIETTE to administer tests for
undergraduate and graduate computer science classes,

graduate telecommunications and botany classes, and
postgraduates studying computer science applied to
mobile technologies. Our database contains approx-
imately 91 courses, 2,086 concepts, and 317 tests,
and 18,760 students have taken tests using SIETTE.

SIETTE’s editing tools help teachers create tests for
their courses. The teachers start by creating a hier-
archy of the concepts the students must learn, then
creating questions that relate to these concepts. These
questions then form a bank from which the teachers
can pull when creating tests. When creating a test,
the teacher must consider these parameters:

• Accessibility. Is the test just for certain students
(lab students, for example)? Can students use the
test to help them study, or is it only for grading
purposes?

• Grading. Can students see the solutions and, if so,
when (after each answer or at the end of the test)? 

• Timing. Is there a time limit for answering?
• Assessment scale. How many knowledge levels

does the test cover? 
• Question-selection criterion. Which criterion is

used to dynamically select questions from the
bank (for example, fixed, random, or adaptive
according to the student’s knowledge level)?

• Test-finalization criterion. How many questions will
be administered to the student (for example, a fixed
number or just those needed to estimate the student’s
knowledge with some statistical certainty)?
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Several teachers can access the SIETTE Web
site for the same course, so they can collab-
orate in developing its content.

In SIETTE’s virtual classroom, students can
take tests as graded exams or for self-assess-
ment to evaluate their progress. The self-
assessment tests can offer hints with the
questions or provide feedback with the
answers to rectify misconceptions and rein-
force well-acquired knowledge.

SIETTE can function as an independent tool,
or you can integrate it into other educational
systems. Several tutoring systems combine
SIETTE with other tools, and we’re collabo-
rating with the MEDEA3 and ActiveMath4

tutoring systems as a diagnosis module for
updating their student models.

SIETTE’s intelligent features   
Experts agree that what constitutes intel-

ligence in intelligent tutoring systems is
“real-time cognitive diagnosis” and “adap-
tive remediation.”5 SIETTE aims to perform
well in cognitive diagnosis, but we assume
that other modules can address adaptive
remediation. However, our studies show that
mere exposure to a diagnosis tool can poten-
tially have remedial effects.

Our system’s intelligence depends on a
model we built6 based on two well-founded
bases: the item response theory (IRT) and the
computer adaptive testing theory. We can
separate this intelligent behavior into two
characteristics: assessment and adaptation.

Assessment
Student-knowledge diagnosis systems must

fulfill certain requirements to ensure scientific
adequacy—particularly when such systems
are part of intelligent-tutoring processes.6 The
diagnosis mechanisms must be

• valid. They shouldn’t depend on the tool or
how it’s applied.

• reliable. The measurement’s accuracy
must be independent of the features being
measured.

• objective. The results shouldn’t be subject
to the observer’s opinion or personal 
perspective.

Teachers tend to use heuristic tests, which
provide information about the student’s
knowledge state but don’t provide the re-
quired validity, reliability, or objectivity.

An alternative to heuristic-based tests is
IRT, which states that we can explain a stu-
dent’s test performance on the basis of his or

her knowledge level.1 IRT can offer valid, re-
liable, and objective results under certain hy-
potheses that can be statistically measured.
Furthermore, IRT measures this knowledge
level as a numeric value (usually on the real-
number scale). In addition, IRT advocates
that there is a probabilistic relationship be-
tween the student’s knowledge level and his
or her response to a question (called an item
in IRT)—that is, we can predict the student’s
probability of answering the item correctly
on the basis of his or her knowledge level.
Furthermore, we can quantify this relation-
ship in a function called the item character-
istic curve. Mining ICCs from data sets of
students who took tests that included a par-
ticular item is called calibration.

For SIETTE, we developed a diagnosis
model based on IRT2 that works with discrete
values. Accordingly, ICCs are probability
vectors where each value represents the prob-
ability of answering the item successfully.
SIETTE uses probability distribution vectors
to form student models—one for each con-
cept. Each probability-distribution value rep-
resents the probability of having the corre-
sponding knowledge level. SIETTE infers
probability distributions from the ICCs of
answered items. At the end of the test, SIETTE

obtains the student knowledge level for a
given concept from the corresponding prob-
ability distribution by calculating either its
statistical mode or expected value. SIETTE

measures knowledge levels in an enumerated
scale beginning at zero. The teacher can
determine the number of knowledge levels—
that is, the assessment’s granularity—on the
basis of the number of categories used to
classify the students. By default, SIETTE uses
12 knowledge levels, because this number
has several divisors, so we can easily map

this scale to other scales with two, three, four,
or six knowledge levels.6

Using a discrete approach is computation-
ally more efficient than using the classical
continuous approach because continuous al-
gorithms require iterative approximation tech-
niques. Moreover, the size of the knowledge
level scale doesn’t scientifically affect this ef-
ficiency. Computational efficiency is impor-
tant—especially in our case, where tests are
administered via the Internet—because it
ensures system scalability. In addition, SIETTE

provides the student model with more than
just a single value representing the student’s
knowledge state. We provide a vector indicat-
ing the probabilities of each knowledge level.

Adaptation
When a teacher orally evaluates a student,

he or she initially asks a question of medium
difficulty. If the student answers correctly, the
next question will be a little more difficult. If
the answer is incorrect, the next question will
be easier. This continues until the teacher can
accurately estimate the student’s knowledge. 

Adaptive tests aim to reproduce this
behavior7 and thus present one question at a
time. The question selection is dynamically
decided in terms of the temporary student
model, which updates each time the student
answers a question. In addition, the test final-
ization is decided adaptively in terms of the
student model’s accuracy. Accordingly, in
adaptive tests, adaptation affects

• concept selection. Unlike classical adap-
tive testing techniques, SIETTE lets you
simultaneously assess several concepts in
the same test. SIETTE starts the testing
process by first selecting the concept in
which student knowledge estimation is
less accurate.

• question selection. SIETTE then selects the
question that it predicts will best estimate
the student’s knowledge level.

• test finalization. After the student answers
the question, SIETTE inspects the student
model to determine whether all the knowl-
edge distributions are accurate enough to
ensure reliable diagnoses. Often, adaptive
finalization criteria are combined with
other nonadaptive criteria, such as an
upper bound on the number of questions.
The rationale is to avoid excessive ques-
tion overexposure and to give all students
the sense that they’re taking a test under
the same conditions. Although adaptive
tests accurately infer knowledge levels,
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some students (especially those obtaining
lower knowledge levels) don’t understand
why their tests contain fewer questions
than those of other students.

Combining adaptive testing with IRT-
based inferences contributes (when both are
used appropriately) to obtaining valid, reli-
able, and objective inferences. The knowl-
edge level calculated from an adaptive test is
valid because it doesn’t depend on the test—
that is, if no learning process occurs between
two adaptive tests on the same concept, the
results we obtain in both should be similar.
Another advantage is that each student re-
ceives a different set of questions, leading to
more reliable evaluations.7 In addition, this
kind of test requires fewer questions than
conventional tests, and students don’t feel
frustrated, because question difficulty is
based on their performance.

Adaptive testing’s main drawback is that
SIETTE must first calibrate the ICCs, which
requires huge data sets of students who have
previously taken a conventional test with these
questions. In SIETTE, we’ve developed a statis-
tical procedure based on kernel smoothing
requiring fewer data sets than classical pro-
posals.6 Furthermore, adaptive tests need
extremely large question pools to ensure
proper adaptation. However, our system can
administer not only adaptive but also conven-
tional tests, so teachers can first use a conven-
tional test with only a few questions. Then,
after collecting a sufficient number of test ses-
sions, teachers can calibrate the questions and
from then on use IRT for evaluations.

Adaptive tests
When a student takes an adaptive test,

SIETTE first initializes a student model. For
each concept assessed in the test, it creates a
knowledge-level distribution. Initially, all lev-
els are constant flat distributions (all values
have the same probability). Then, the itera-
tive question-administration process begins.

SIETTE selects each question according to
the selection criterion used, which uses stu-
dent-model knowledge distributions to deter-
mine the most informative question. If the
teacher decides to use the Bayesian approach,
SIETTE will automatically select the concepts
and questions in the same step. So, for tests
that aim to assess multiple concepts simulta-
neously, the Bayesian selection criterion will
select the most informative question related to
the concept for which the student knowledge
estimation is the least accurate. Therefore,

when the test ends, the system infers the stu-
dent’s knowledge level for all concepts with
sufficient accuracy. The rationale of this se-
lection criterion is to compute the expected
variance of the student model’s posterior
knowledge distribution. SIETTE performs this
for each question as follows:

1. Compute the probability p that the stu-
dent will correctly answer the question
and the probability that the student
won’t (1 – p). We can estimate p by the
dot product between the current esti-
mated student knowledge distribution
and the ICC (for the current concept
being considered). 

2. Compute both posterior distributions of

the estimated student’s knowledge level,
applying Bayes rule, supposing that the
student correctly answers the question
and then supposing that he or she fails.

3. Calculate the variances of the two pos-
terior distributions.

4. Compute the expected posterior variance
using the weighted sum of the variances
obtained in step 3 and their correspond-
ing probabilities calculated in step 1.

SIETTE selects the question that will provide
the more accurate estimation of the student’s
knowledge level—that is, the question with
the minimum expected posterior variance.

The system updates the student model to
reflect whether the student answered the ques-
tion correctly. Either way, it updates only the
student knowledge distribution correspond-
ing to the concept the selected question aims
to assess; it doesn’t change anything related
to other concepts. 

After the system updates the student
model, it checks the finalization criterion—

for example, the accuracy-based criterion
requires computing each knowledge distrib-
ution’s variance. If all variances are below a
threshold, the testing algorithm stops. Oth-
erwise, the system reapplies the selection cri-
terion. After the test, the system can calculate
the knowledge level in different ways—for
instance, using the knowledge distribution
mode (that is, the most likely knowledge
value).

To contribute to a better understanding of
how adaptive tests function, consider the fol-
lowing example. A student is going to take
an adaptive test involving two concepts, A
and B. So, two knowledge distributions (one
for each concept) form the student model. To
simplify, we also assume that the test ques-
tion pool comprises only 10 questions:
P1–P10. The first five questions assess con-
cept A; the rest assess concept B. All the
questions are true/false, so only two answers
exist. The assessment granularity is six
knowledge levels, from 0 to 5. The threshold
for the test finalization is set to 0.21.

Figure 1 shows the evolution of the adap-
tive test sessions. Figure 1a shows a matrix
with the ICC values for each knowledge
level. These values have been computed by
discretizing a three parameter-based logistic
function:

In this function,

• � is the knowledge level,
• ui is the student’s answer (when ui = 1, the

answer is correct),
• ai is the item discrimination factor (the

higher this value, the higher the probabil-
ity of answering the item),

• bi is the question difficulty (the knowledge
level for which the probability of answer-
ing correctly is the same as answering
incorrectly), and

• ci is the question guessing factor (the prob-
ability of answering correctly with knowl-
edge level equal to zero).

This function is the most commonly used in
IRT for modeling ICCs. 

Figure 1b shows the student model—that is,
the probability distribution for each concept of
the test, and also the variance of these distri-
butions, since this value determines whether
to end the test. Below the student model are
the answer distributions for six questions.
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Figure 1. An example of adaptive-testing administration: (a) the Item Characteristic Curve matrix, (b) the student model and 
the answer distributions for six questions, and (c) the posterior variance expectation. The red arrows show the question that 
minimizes the expected ICC value.



Figure 1c shows the calculations needed
to adaptively select the most suitable ques-
tion. The question selected is the one that
minimizes this expected value (indicated
with a red arrow). Every time SIETTE selects
a question, it removes it from this test ses-
sion’s question pool. After the question selec-
tion, in the next row, we emulated the stu-
dent-answering process.

As explained before, SIETTE repeats this
process until the threshold is reached. In the
example, six questions have been required to
infer the student knowledge with the desired
accuracy (0.21). Once the test is finished,
SIETTE infers the student knowledge level in
each concept. In this case, the student knowl-
edge level in concept A is 3 (because the
highest probability for the final estimated stu-
dent knowledge distribution is 0.3944). In
concept B, the student knowledge level is 2
(with 0.3551 as the highest probability).  

Experiments
The University of Málaga’s Artificial Intel-

ligence and Knowledge Engineering (AI&KE)
course has used SIETTE for three academic
years (since the second half of 2003). The
annual course is split into two 14-week semes-
ters and requires that students learn the Lisp
programming language. Teachers evaluate stu-
dents’ knowledge of Lisp using a SIETTE-
administered test. They teach Lisp during the
first semester, from October to February. Stu-
dents have three opportunities to pass the
SIETTE test—in December, February, and June.
They can also retake the exam the following
September. Only the course’s students can
access the tests, and only using the PCs located
in the school’s teaching laboratories. The ques-
tions are always multiple-choice with three
possible answers, only one of which is correct
(students can skip questions).

We’ve collected 458 test sessions corre-
sponding to the following exam sessions:
December 2003; February, June, September,
and December 2004; February, June, and
September 2005; and February, June, and
December 2006. Table 1 shows the percent-
age of students who passed the test (that is,
achieved a knowledge level greater than or
equal to 6) and the average knowledge level
(on a 0–11 scale) obtained.

During the 2005–2006 academic year,
teachers created an open test and made it
available on the Internet to AI&KE students
to give them a drill-and-practice environment
for self-assessment. Teachers selected test
questions from a pool of 135 questions, all
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Table 1. Test results for the Lisp exams.

No. of Students who Standard
Exam date students passed (%) Mean deviation

Dec. 2003 83 57.8 5.759 2.882

Feb. 2004 44 59.1 5.659 2.449

June 2004 9 66.7 6.778 1.986

Sept. 2004 29 62.1 5.828 2.842

Dec. 2004 79 49.4 5.367 1.427

Feb. 2005 54 70.4 6.019 1.078

June 2005 9 33.3 4.222 2.108

Sept. 2005 16 99.0 6.882 2.369

Feb. 2006* 93 67.7 6.441 2.590 

June 2006* 28 71.4 6.250 2.171

Sept. 2006*† 24 19.0 4.250 2.642

* Students had access to a self-assessment test prior to taking the exam.
† Students experienced connectivity problems during the exam.

Table 2. The number of valid sessions in the Lisp self-assessment open test.

Open test No. of No. of Standard
sessions users sessions Mean deviation

Before Feb. 2006 103 439 7.349 2.592

Before June 2006 42 276 6.605 2.819

Before Sept. 2006 20 230 6.991 2.642

Total 165 945 6.982 2.688
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Figure 2. The number of (a) students who took the open test given the number of test
sessions and (b) sessions that were taken in relation to the day of the final exam.



of which had appeared in previous tests and
whose questions were determined by the
teachers. We restricted the maximum num-
ber of questions to 20 to avoid overexposure.
From January to September 2006, students
could access this test freely from their homes.
They performed a total of 1,108 test sessions. 

To analyze this information, we filtered the
student test sessions to eliminate incomplete
sessions (4.9 percent) and sessions completed
in less than five minutes (13.9 percent). Table
2 contains the filtered data of students who
took the open test before the actual exam.

Students made wide use of the self-assess-
ment test. Figure 2a shows the absolute fre-
quencies. A large percentage of students took
the open test only once, but certain individ-
uals took it up to 50 times. Also, as figure 2b
illustrates, most of the self-assessment test
sessions were taken less than three days
before the exam date (71 percent). This sug-
gests that students considered the self-assess-
ment test a useful tool to prepare for the
exam. Moreover, we should mention that the
score obtained in the self-assessment test was
higher than in the exams, but we consider this
fact meaningless because these tests weren’t
taken in a controlled environment.

We also analyzed how the self-assessment
test influenced student performance for the
February, June, and September 2006 exams.
We compared the average scores for this year
with the average scores in previous years. We
consider the comparison to be fair because
course content and teachers were the same,
and other factors involving the students’cog-
nitive states were similar. We used the clas-
sical statistical hypothesis test (independent
one-tailed t-test). We can clearly reject the
null hypothesis (which states that the means
of both samples are the same) in all cases
except September 2006. 

We discard the last exam because the con-
ditions under which we administered the test
were considerably different. That particular
day, numerous connection problems created
difficulties for the students. Every time the
students lost their Internet connection, they
had to begin their test again. This likely
caused stress for the students, possibly affect-
ing their performance. In fact, the perfor-
mance in that student sample was the worst
we obtained (only 19 percent of individuals
passed the exam).

Nevertheless, considering all the data
(even from the September 2006 exam), as
table 3 shows, the increase in student per-
formance for that year is still statistically sig-

nificant (p < 0.01). If we discard the Sep-
tember 2006 data, we can quantify the
improvement in the final results as 8.6 per-
cent (± 9.8 percent) with 95 percent confi-
dence. This is because before the open test,
the average number of individuals who
passed their exams was 60.0 percent (knowl-
edge level greater than or equal to 6). After
introducing the self-assessment test (again,
not counting the September 2006 data), an
average of 68.6 percent of students passed.

To determine whether this effect is a con-
sequence of using the self-assessment tests,
we conducted a second experiment on a dif-
ferent course corresponding to data from the
2006–2007 academic year. This time, we
selected the annual Language Processors
(Compilers Construction) course, which
requires learning how to use Lex, a lexical
analyzer generator. According to the course
schedule, teachers explain this concept in
November. The students must take two
exams that include an assessment test about
Lex: one in December and another in Febru-
ary. Both exams are administered under the
same conditions as the Lisp exam. Table 4
shows the results.

Then we created an open test of Lex for
student self-assessment. We limited the num-
ber of sessions to a single session for a day
(that is, students could take the open test only
once a day), and we made the test available
only the last week before the exam. The pur-
pose of these restrictions was to try to reduce
the noise in the data collected. Those students
who had previously supplied their email
addresses were offered the possibility of tak-
ing the self-assessment open test voluntarily
prior to the February test. This makes a semi-
random division between an experimental
and a control group. A completely random

experiment is difficult to achieve in this case,
because we must guarantee the same oppor-
tunities to all students, and self-assessment
tests are taken at home in uncontrolled con-
ditions. However, we compared the results
obtained by the experimental and control
group in the first test of December and in the
second test of February (see table 5).

Not all students took both tests, so the num-
bers vary from one comparison to another.
Both groups performed similarly on the
December test, where no previous self-assess-
ment tests were made available. However, the
experimental group performed much better
in February than the control group, and the
results are statistically significant.

In addition, we made a pairwise compar-
ison to determine whether the students of the
control group increased their performance
from the December to the February test. To
this end, we studied the difference in the
score obtained in both tests. It’s positive and
statistically significant in the experimental
group, and positive (but not significant) in
the control group (see table 6). In any case,
the experimental group increased its per-
formance much more than the control group
(p < 0.00021). Concerning the percentage of
students passing both exams (assuming both
tests are equally difficult), we can quantify
the absolute improvement as 27.6 percent 
(± 15.3 percent) for the experimental group
with the standard 95 percent confidence. The
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Table 3. Mean comparison and value of p to reject the null hypothesis.

No. of Standard
Exam date students Mean deviation Significance

Feb. 2004 and 2005 98 5.857 2.192

Feb. 2006 93 6.441 2.590 p < 0.0098

June 2004 and 2005 18 5.500 3.009

June 2006 28 6.250 2.171 p < 0.0555

Sept. 2004 and 2005 45 6.203 2.714

Sept. 2006 24 4.250 2.642 p < 0.00001

All

Dec. 2003–Sept. 2005 323 5.744 2.660

Feb. 2006–Sept. 2006 145 6.041 2.632 p < 0.0157

Table 4. Test results for Lex exams.

Exam No. of Standard
date students Mean deviation

Dec. 2006 68 6.397 2.280

Feb. 2007 91 7.418 2.574



control group’s performance decreased, but
the amount was negligible (0.71 percent).

Finally, we also studied the relationship
between the exam scores and the number of
self-assessment test sessions, considering the
self-assessment test’s minimum, maximum
and average scores. We found a small positive
but no significant linear correlation. Accord-
ingly, we want to conduct further research.

Our results are promising, and student
feedback has been positive. In the

future, we plan to continue collecting data
from new exam sessions to verify what we
have suggested—which is that the more data
we will have, the more significant improve-
ment for all knowledge levels we should
obtain. In addition, we would like to intro-
duce further instructional features in our self-
assessment tests by means of feedback, to
guide the instructional process correctly. We
intend to compare SIETTE with other testing
environments that might be freely available
to students. We also plan to enable or disable
some of its features to study the real effec-
tiveness in learning benefits.
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Table 5. Comparison between experimental and control groups 
for Language Processors course.

No. of Students who Standard
Exam group students passed (%) Mean deviation Significance

Dec. 2006 20 65.00 6.550 2.188
control group

Dec. 2006 41 68.29 6.293 2.380 p > 0.55
experimental group

Feb. 2007 42 64.29 6.190 2.805
control group

Feb. 2007 49 95.92 8.469 1.804 p < 0.00000
experimental group

Table 6. Pairwise comparison between the control and experimental groups.

No. of Standard Significance Significance
Exam group students Mean deviation (mean < 0) (t-test)

Dec. 2006 20 +0.950 2.704 p < 0.13 p < 0.00021
and Feb. 2007
control group

Dec. 2006 41 +2.439 2.346 p < 0.0000001 p < 0.00021
and Feb. 2007
experimental group
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