

- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
 - *Test editor
 - * Temporary student model
 - * Test generator
 - * Evaluation algorithm
- Example
- Conclusions

SIETTE: Temporary student model

- A temporary student model is created and updated for each student that takes the test.
- ◆ The information contained in the temporary student model is used by the test generator to provide adaptive capabilities.
- Student's knowledge is a random variable θ that can take 11 values (0,...,10).
- In absence of information, the probability is uniformly distributed between the 11 levels.
- Probabilities are updated with a bayesian procedure.

- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
 - * Test editor
 - * Temporary student model
 - * Test generator and evaluation algorithm
- ◆ Example
- Conclusions

SIETTE: Test generator

Test generation algorithm consists of three procedures:

1. Question selection

Test developers can choose between:

- * bayesian procedure (minimum posterior standard deviation),
- * adaptive procedure (minimum distance between mean of ICC and mean of current student model),
- * random procedure.

SIETTE also uses the weights for each topic to assure content balanced tests.

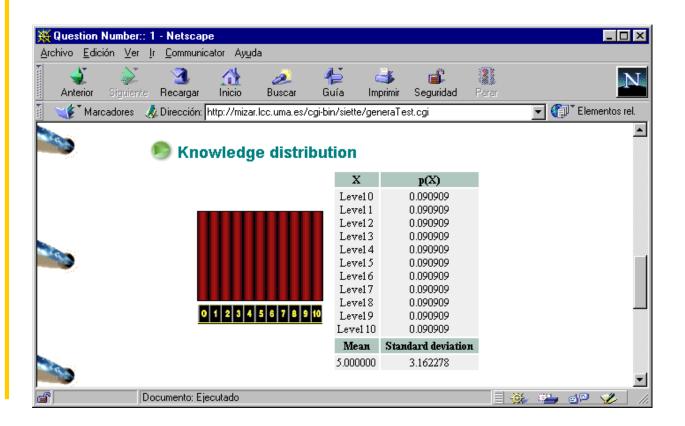
- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
 - * Test editor
 - * Temporary student model
 - * Test generator and evaluation algorithm
- ◆ Example
- Conclusions

SIETTE: Test generator

- 2. Updating the temporary student model

 Once the student has given his/her answer, SIETTE computes his/her new proficiency level and updates the student model.
- 3. Termination criterion

Is selected by test developers, and can be any valid combination of the following cases:


- * The standard deviation of student's knowledge distribution is smaller than a fixed value
- * The probability of having a knowledge greater than k is over a certain level.
- * The system has already posed a maximum number of questions in a test.
- * The system has posed at least the minimum number of questions of each topic

- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
- ◆ Example
- Conclusions

Example

Initialization of the temporary student model:

- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
- ◆ Example
- Conclusions

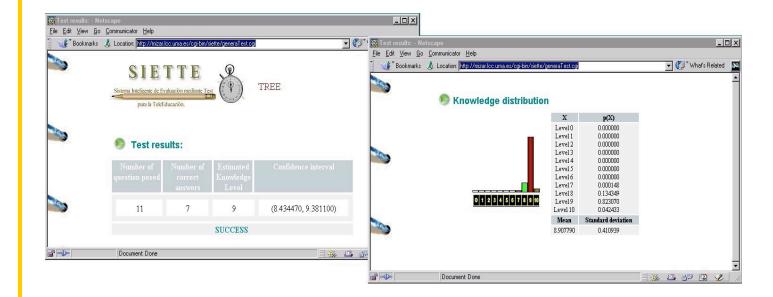
Example

First question and its ICC

- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
- ◆ Example
- ◆ Conclusions

Example

Intermediate state (after seven questions)



- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
- ◆ Example
- Conclusions

Example

Final state

- Introduction
 TREE Project
 Adaptive Testing
- SIETTE System
 Description
 Architecture
 Modules
- ◆ Example
- Conclusions

Conclusions

- We have developed a web-based tool to assist teachers in evaluation and students in learning and auto-evaluations.
- ◆ The tool can be used by many different users simultaneously.
- ◆ Format and aspect of questions are adaptable to teaches preferences, and can include multimedia content.
- ◆ Templates can be used to generate a wide number of questions.