
1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

1

Automated Assessment of Complex Programming
Tasks Using SIETTE

Ricardo Conejo, Beatriz Barros, and Manuel F. Bertoa

Abstract—This article presents an innovative method to tackle
the automatic evaluation of programming assignments with an
approach based on well-founded assessment theories (Classical
Test Theory (CTT) and Item Response Theory (IRT)) instead of
heuristic assessment as in other systems. CTT and/or IRT are
used to grade the results of different items of evidence obtained
from students’ results. The methodology consists in considering
program proofs as items, calibrating them and obtaining the score
using CTT and/or IRT procedures. These procedures measure
overall validity reliability as well as diagnose the quality of
each proof (item). The evidence is obtained through program
proofs. The SIETTE system collects and processes all data to
calculate the student knowledge level. This innovative method
for programming task evaluation makes it possible to deploy the
whole artillery developed in this research field over the last few
decades. To the best of our knowledge, this is a new and original
contribution in the area of programming assessment.

Index Terms—Automated Grading, Automatic Programming
Assessment, Evidence-Centered Design, Item Response Theory,
Computer Supported Education

I. INTRODUCTION

Programming assignments are an important part of practical
tasks in engineering degree programs. Their evaluation and
grading can be done either manually by teachers, semi-
automatically (some tasks are supported by a computer), or
automatically. In any of those cases, the task is tedious and
time-consuming. The automation of the evaluation of assign-
ment tasks benefits both teachers and students [1]. Automatic
assessment is better than human in some aspects and worse
in others. Humans understand the program better and more
deeply than an automatic system and easily prevent or ignore
minor, insignificant errors. On the other hand, consistency is
higher in automatic assessment because the computer always
applies the same rules without subjective biases. However,
immediate results and feedback are the key factors in favour
of automatic assessment.

We are aware that ”Testing can only prove the presence
of bugs, not their absence”, as Professor Edsger W. Dijkstra
said, and that the method we are proposing here does not
completely replace the need for human teaching. We support
current trends for blended learning, and our idea is not to
substitute teacher feedback but rather to facilitate the grading
of student programming exercises and provide a framework to
support well-founded assessment.

Ricardo Conejo and Beatriz Barros are with E.T.S. Ingenieria In-
formatica, University of Malaga, Spain. Manuel F. Bertoa is with
E.T.S. Ingenieria Telecomunicacion, University of Malaga, Spain. E-mail:
conejo,bbarros,bertoa@lcc.uma.es

The automation approach is time-consuming in the prepara-
tion and definition of the task and obliges the teacher to define
a precise and computable criterion to be applied to a student’s
solution. However, in its favour, it results in a more precise
and objective evaluation in addition to allowing the teacher to
document and reuse this work in the future.

There are many systems that carry out automatic assessment
of practical assignments, summarized in surveys such as [2],
[3], [4], and recently, [5]. Some of the systems referred to in
the surveys just accept or reject the solution; others use a set of
proofs that accumulate points and calculate a final grade using
just the arithmetic mean or the arithmetic mean of a weighted
sum, where weight is defined heuristically by the teacher.

The evaluation of programming assignments is a complex
task that requires several layers of knowledge and skill. There-
fore, it is not enough to get a pass/no-pass or a heuristic value
as the outcome of a set of proofs applied to students work. It
is a challenge to get the fairest and most accurate value. In
our research, we focus on the grading problem, that is, How
the final grade is calculated from the different proofs applied
to the students program? There are assessment theories such
as Classical Test Theory (CTT) and Item Response Theory
(IRT), that provides accurate measures and quality indicators
for test-based assessment, that is, assessment based on a set of
questions, commonly called items, but they are not currently
applied to programming assignment evaluation as far as we
know.

The main contribution of this work is the proposal of
a technique to allow automatic assessment of programming
assignments by using these well-founded assessment theories
(CTT and IRT) instead of heuristic assessment as other sys-
tems do. To the best of our knowledge, this is a new and
original contribution. The advantages of this approach are
derived from the advantages of using a well-founded theo-
retical frameworks and all their measures, quality indicators,
and calibration processes that can be applied. To sum up, the
article tries to illustrate two issues: (1) that it is feasible to
conceive the evaluation of a programming assignment as a
CTT or IRT assessment problem; and (2) that these techniques
provide richer information and control over the assessment of
programming assignments.

In order to support our contribution, this technique has
been implemented and tested as a flexible and configurable
extension of a web-based assessment system called SIETTE,
described in the following sections. This extension enables the
evaluation of programming assignments with different types of
proofs, and their integration with the CTT and IRT features
of SIETTE. The system is independent of the programming

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

2

language, and the proofs can be of different types. SIETTE
also implements several textual and graphical forms of output
of the different measures of these theories.

The underlying idea is inspired by Evidence-Centered De-
sign (ECD) methodology, which is a guideline for design-
ing, producing, and delivering educational assessments [6],
summarized in Section II-A. A second source of inspiration
is the Constraint Based Modelling (CBM) field, which is
summarized in Section II-B. In a nutshell, different program
proofs are viewed as constraints, or test items that can be
satisfied or not, and the results are integrated into a well-
founded statistical assessment theory.

In this paper we are going to present the system’s exten-
sion and the different experiments carried out to show the
advantages of using this approach. This article is organised
as follows. First, background concepts and some related work
are provided. Then, a short description of SIETTE and some
features related to the research are presented. Next, the method
for the assessment of programming tasks is described in detail
and illustrated with a toy case. After that, some representative
experiments are described, and illustrated by applying the
method to three different subjects. We have selected the
subjects from the various subjects available to cover the
different types of analyzes and studies available. The system
is compared with previous works under different perspectives,
and finally discussion, conclusions, and future lines of research
work are presented.

II. RELATED WORK

There are many systems for evaluating practical assign-
ments, some of them cited in the introduction. In this section,
we focus on three research fields closely related to our pro-
posal: evidence-centered design, constraint-based modelling,
and the automatic scoring of programming assignments.

A. Evidence-Centered Design (ECD)

ECD is a theoretical and methodological framework in-
troduced by [6]. It is defined as a framework that makes
explicit the structures of assessment arguments, the elements
and processes through which they are instantiated, and the
interrelationships among them” - [7]. ECD treats assessment
as a process of reasoning from the necessarily limited evidence
of what students do in a test environment to claims about what
they know and can do in the real world [8].

ECD considers a task model (in our case, the task model is
the programming assignment) as well as an evidence model
made up of two submodels: the evaluation model (defines the
observable elements of each task) and the statistical model
(defines how the evidence is turned into knowledge-level
measures).

In our case, the evidence is obtained through proofs (evalua-
tion programs, measurements, etc.) gathered by external tools,
all of them launched from the SIETTE platform. The use of
external tools to carry out the proofs offers the advantage of
being able to achieve different types of evaluations: black-box,
code structure, performance, similarity, etc., with specialised
programs on quality measurements. The evaluation model is

implemented in SIETTE by a dichotomous or a polytomous
item model, and the statistical method is accomplished using
CTT or IRT.

B. Constraint-Based Modelling (CBM)

The CBM paradigm for building Intelligent Tutorial Sys-
tems (ITS) is based on Ohlsson’s theory of learning from
performance errors [9], according to which, incomplete or
incorrect student knowledge can be used within an ITS to
provide guidance. The application of CBM is very simple:
once a student has finished solving a problem, constraints
are checked against the student’s solution. The satisfaction
condition of a constraint specifies properties that the solution
must fulfil to be correct. The performance of a student with
respect to the constraints, i.e., the list of violated and satisfied
constraints in each solution, form a part of his student model.

In our approach, our evaluation model defines a set of proofs
to be applied to the student program. This plus ECD gives the
assessment model for problem solving environments described
in detail in [10]. This technique has been successfully used to
evaluate disciplines such as project investment [11], Object-
Oriented Programming and Simplex algorithms [12].

From the CBM point of view, each proof is a kind of
constraint. We have extended SIETTE with functions to de-
clare evaluation scripts for program assignments as a set of
proofs and features for communication with external tools
and translate proof results into a dichotomous or polytomous
evaluation model.

C. Automatic Scoring

The systems referred to in surveys on automatic evaluation
or program assignments such as [2], [3], [4] or [5] use black-
box methods with proofs (input, expected output) to evaluate
students code. These proofs yield a list of successes or failures
used as input to calculate a grade for the practical work.
There are different proofs to be applied to practical work
in various areas: about the submission process, code style,
compilation process, program execution (with two phases to be
judged: correctness and program efficiency), and the similarity
between the student code and a model provided by the teacher.
[13] identify three main approaches to classify the existing
automatic grading of student programs: dynamic analysis,
software metrics and source code analysis. [14] classifying
the automated marking of programs into black-box testing and
source code assessment.

Positive proofs give points. These points are the input of
a heuristic mode to calculate the final score. Usually, the
heuristics consists in an average of points or a weighted sum of
points, depending on the proof. Other proposals, such as [15],
combine these black-box methods with a study of the quality
of code, both combined in a weighted sum of values. They use
linear regression methods to calculate the values of a weighted
sum, using a model built with a dataset assessed manually
by a teacher. [16] describe some types of tests used for the
most recent systems to assess student programs. They propose
metrics implemented in ProgTest tool, for the C and Java
languages, and consider three testing tools: unit testing tools,

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

3

coverage testing tools, and mutation testing tools. They used
Java and C specific testing tools. These proofs are combined
using a variety of heuristics to calculate the final score. As
far as we know, none of the existing systems in the literature
exploit the advantages of IRT to assess practical assignments
(see [17] for a description of the IRT approach).

III. THE SIETTE ASSESSMENT ENVIRONMENT

SIETTE is a web-based tool for managing and administering
computerised assessments (see [18] and [19]). The system
incorporates item banking, test building, delivery, and result
presentation and analysis. It supports Classical Test Theory
(CTT), Item Response Theory (IRT) and Computer Adaptive
Testing (CAT). Currently, it has more than 40,000 users from
various universities in Spain, Ecuador, and Chile. There is
a plug-in to integrate SIETTE with Moodle, the Learning
Management System (LMS), used in the Virtual Campus of
the University of Malaga (VC-UMA). Since 2009, all students
registered in the VC-UMA have had direct access to SIETTE,
which is viewed as another Moodle activity. Scores obtained
in SIETTE are automatically transferred to the VC-UMA.

A. Assessment Modes and Item Types

SIETTE supports multiple item and assessment modes be-
yond the classical multiple-choice test. Items are stored in an
item bank labeled with metadata. Basically, an assessment
poses a set of items to collect evidence about the student
knowledge level. Assessments are configured defining differ-
ent item selection, evaluation and finalization criteria, posing
modes, assessment mode, etc. According to the conditions
defined, the assessment can be taken once or multiple times. In
the case of a programming assessment, the items are the test
cases that evaluate the correctness and quality of the program.
In this section, we describe SIETTE’s internal items and how
a programming test case can be viewed as an item in itself.

Assessment modes are the set of rules that are used to obtain
the student score. There are several pre-defined modes, but
they can be grouped in three types: (1) Percentage of correct
answers. In this case, each item is correct or incorrect, and the
model just finds the ratio. (2) Heuristic scoring. In this case
some points are assigned to each response option and the score
is calculated in terms of the relationship between the points
obtained by the student and the maximum points available. (3)
Item Response Theory, that will be explained later.

Internal items in SIETTE are of three types: (1) Multiple-
choice, single answer; (2) multiple-choice, multiple answer,
and (3) short-answer. Each of these internal types has its own
evaluation associated procedure for each assessment mode i.e.
the correctness, the points, or the item characteristic curve
(ICC) associated with each response option. Short-answer
items allow students to enter a short text as an answer, which
is recognized by a set of patterns provided by the teacher
and assigned to the corresponding answer option. SIETTE
provides different types of patterns for different uses. The most
commonly used are regular expression patterns. For instance,
a question could ask: What is the value of π? The pattern
∗ < 3.14 | 3.15 > ∗ will accept a line of text that includes

a numerical value of between 3.14 and 3.15 as the correct
answer, and any other as incorrect. For instance, the answer
3.1416 approx. would be considered correct.

In addition to the basic internal items, SIETTE supports
composed items, which are a set of internal items that are
always posed together. A composed item could be, for ex-
ample, a small physics problem where the stem asks for the
acceleration, the velocity, and the space of a solid, given
certain conditions. Composed items can be evaluated as a
single item or by considering each of its components as
an item. This second method is commonly used because it
provides richer evidence about student knowledge.

SIETTE also supports rich interactive questions that are
played by Java applets or Javascript in the web browser.
The student interaction is finally transformed into an option
selection or into a short text, which is recognized by a
multiple-choice or by a short-answer internal item (see [20] for
a detailed description of this mechanism). Moreover, SIETTE
has defined its own high-level protocol to call an external web
application, which plays an item. SIETTE passes the item data
to the external application, including the stem and expected
results, and the external application returns to SIETTE the
student answer turned into a multiple-choice option or a short
text to be recognized by an internal short-answer item pattern.
This mechanism also supports composed items.

Fig. 1. Overview of the protocol to play external items.

When an external item is selected, SIETTE generates an
HTTP call (Figure 1) (using get or post methods) to a given url
with some given parameters, including at least two predefined
ones. The first is the returning url parameter, that is, the url
that should be called back by the external application once the
presentation of the item has been completed. This returning
url includes the item, student and session identifiers, so that
SIETTE can process the answer after returning. The second is
the answer parameter, which tells the application the name of
the parameter that should be returned to SIETTE containing a
response string. SIETTE and the external application commu-
nicate solely through HTTP calls, and so they do not have to
be on the same machine. However, the external application is
displayed in the same frame of the browser used by SIETTE,
so the student perceives it as the same session.

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

4

B. The File-Item Player

Special kinds of external items have been defined for
those items that require the student to send a file or a set
of files as his answer. This is the feature used to evaluate
programming tasks. In this case, the external application is just
a SIETTE component, called SFIP (witch stands for SIETTE
File-Item Player) that is able to execute a high-level script
language, called SPS (witch stands for SIETTE Processing
Script), developed specifically for this extension of SIETTE.
In addition to passing the stem and the expected results to
any external item player, in this case, SIETTE passes over to
the SFIP the script, the file name, and optionally, a directory
containing auxiliary files and receives back the file or the set
of files submitted by the student and the evaluation results.

We now explain the whole process with a programming toy
example. We ask the student to compute the greatest common
divisor (gcd) and the least common multiple (lcm). Figure
2 shows how the question is posed. The question asks the
student to submit a file that will be named prog.cpp and which
will be compiled and executed passing arguments through the
command line.

Fig. 2. Programming task item example (student view).

Suppose that the teacher wants to check whether the pro-
gram works for some test cases, but wishes to check gcd and
lcm independently. Additionally, for those programs that do
work, a complexity check is run. In this simple case, the
teacher will define a composed item in SIETTE with three
short-answer sub-item components, one for each function, plus
a complexity measure (Figure 3). For each component, three
assessment options are defined: FAIL, PARTIAL, and FULL.
For this example, a simple heuristic scoring approach for the
assessment mode will be used, so the teacher will assign 0
points to FAIL, 0.5 points to PARTIAL, and 1 point to FULL.
1 The teacher should also include in this sub-item a section of
the entire SPS (Figure 4), which is entered in the Advanced
tab.

The processing script declares the set of commands that
should be executed to evaluate the submitted file. It first
compiles the code and checks that the result gives no error.
If successful, it continues; otherwise it stops (@OnError
stop). Then, the script executes the program proofs with
the given examples and checks that the results match the
expressions given using the (@SIETTEPattern). If the
result matches, it continues processing; if it fails, it skips to

1Notice that there is no need to include the FAIL option, because anything
not matching the given patterns is considered to be wrong.

Fig. 3. Programming task item example (teacher view).

the next sub-item (@OnError skip). The third sub-item has
a different proof. It is only executed if the first and second
have been completed, and it tests the program code complexity
using the score provided by the GNU complexity command.2

Fig. 4. Example of a file-item processing script

The returned value of this process is the label associated
with the last command successfully executed for each sub-item
(that is, either FAIL, PARTIAL, or FULL) for the first two
sub-items and SIMPLE or COMPLEX for the third. In addition,
the source file submitted is saved for subsequent use.

When the control is returned to SIETTE, the behavior is
similar to a student answering the given question with the text
FULL or PARTIAL. From this point, the item is treated as
any other internal item; the heuristic score assessment mode is
applied, the appropriate feedback message could be triggered,
3 the next item selection procedure is following, etc.

To sum up, each sub-item can be evaluated with a simple
true or false model (dichotomous item) or a graded model
(polytomous item). Each sub-item may contain one or more
proofs: regarding the quality of code, its performance, the
outcomes of a given input, the similarity of the solution with
a specified one, etc. Commands could compile and execute
the code, but they could also include calls to static code
analysis, software measuring tools, test-case generators, etc.
The important issue is that after executing a set of proofs, a
label is returned to SIETTE and that label is recognized as a
response option. Using composed items, the teacher can define

2See http://www.gnu.org/software/complexity/
3Note that different labels can be used to recognises common student errors

and provide adaptive feedback.

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

5

as many sets of proofs as needed, and they can be executed
independently.

According to the Evidence Centered Design (ECD) termi-
nology, the file-item player presents a programming exercise
to the student, provides a form to submit a set of files as the
result (the Presentation Process), and applies a given set of
rules (the Evidence Rules) to obtain a string that represents the
evaluation of the exercise (the Work Product). That string is
passed to an underlying open answer internal item in SIETTE,
which assigns a score to that evaluation string (the Response
Scoring Process).

C. Grading Procedures and Analysis Tools
Once the file items corresponding to programming tasks

have been completed, they are treated in SIETTE as any other
item and, therefore, CTT and IRT can be used for grading and
to analyze test and item performance and quality.

A major advantage of using SIETTE to evaluate program-
ming tasks is the possibility of using SIETTE’s built-in grading
procedures and test and item analysis tools. This is a key
feature that, to the best of our knowledge, differentiates
this proposal from other systems that automatically correct
programming tasks.

1) Test Analysis: In general, an assessment (also called a
test in this section), is comprised of a set of items. In the case
of programming tasks, there might be a single composed item
with multiple sub-item components or multiple independent
and differentiated small programming tasks or even a com-
bination of both. Each time a student takes an assessment,
it is called a student session. The teacher can configure the
assessment to allow or disallow, multiple sessions of the same
student (retries), and to apply date and access constraints.

SIETTE includes tools to analyze the assessment results.
They include descriptive statistical data such as the number of
sessions, number of items per session, final-score distribution
histogram, time-spent histogram, etc.

Moreover, SIETTE calculates three of the most commonly
used test reliability indicators in the CTT: Cronbach’s α (raw
and standard); Guttman’s λ4 and Spearman-Brown’s coeffi-
cient calculated using random test halves. If IRT is used as the
grading procedure, SIETTE also provides the Test Information
Function (TIF).

2) Item Analysis: SIETTE provides a set of tools to ana-
lyze the performance and quality of the items. They include
descriptive statistical data such as the number of sessions in
witch items have appeared, a time-spent histogram, absolute
and relative frequency of response; and CTT and IRT indica-
tors.

Classical Test Theory indicators include the difficulty index,
the discrimination index, and the point-biserial correlation
between item and test results; the tetrachoric correlation ma-
trix and Cohen’s kappa are among the items. SIETTE also
calculates the indicators for each item response option. If the
IRT is used as the grading model, SIETTE shows the Item
Characteristic Curve (ICC) of the dichotomous classical three-
parameter model (3PL); the Item Information Function (IIF);
and the curves associated with each response option in the
polytomous Graded Response Model (GRM).

D. Validity and Reliability

It is not common practice in the field of automatic pro-
gramming assessment to refer to the psychometric concepts of
validity and reliability of the scoring procedure. Validity refers
to how well a test measures what it is purports to measure. Lets
assume that the validity of the human grading of programming
tasks is the ground truth, that is, the criteria imposed by the
teacher to measure a student’s programming ability. The only
source of error in this case would be the interpretation of
the student’s submission, that is, the assessment reliability,
which could be measured by the correlation between two
different human graders, but is usually not considered. In
the case of automatic assessment, validity is ensured in the
same way because the teacher explicitly declares the criteria.
However, human raters cannot always elicit their criteria, and
sometimes they make a holistic assessment of the student’s
submission. Another source of problems is that the system
applies the rules strictly, and human raters are, in general, more
flexible. For instance, an automatic programming assessment
system will apply a null score to programs that do not strictly
follow the naming instruction, while human assessment will
penalize that error but assign some credit to the rest. Thus the
validity problem remains. In the early stages of the system’s
development a study was conducted to measure validity as the
correlation between machine and human scores in a particular
case. The results are presented in Section IV-A1.

Reliability is the degree to which an assessment tool pro-
duces stable and consistent results. That is, an assessment is re-
liable if it produces the same results each time it is employed.
The system proposed in this article allows the application of
techniques based in standard measurement theories techniques
to assess the reliability. The reliability indicators are shown for
all cases and listed in Section IV-A2.

Of course, validity and reliability are closely linked to the
specific assessment case, and conclusions cannot be extrapo-
lated universally. However, one of the advantages of the system
proposed in this article is that reliability is automatically
measured and can be improved by standard psychometric pro-
cedures (i.e., discarding some items, calibrating item curves,
choosing the most appropriated assessment model, etc.).

In Section IV, different use cases are presented. They are
used to show different features of the system, demonstrate
their usefulness, and provide information for good practices
in automatic-programming tasks assessment.

IV. USE CASES

The framework was first developed in 2009, although some
features were not added until later versions after we had
resolved the problems of previous ones. It has been used for
formative and summative assessment in different subjects at
the School of Computer Engineering, the School of Electronic
Engineering and the School of Mathematical Science at the
University of Malaga. The exercises proposed consisted in
student exercises that took between ten minutes to six hours
of programming. At the time of writing of this paper, the
system has been used in 9 different subjects, which means that
96 different assessments have been taken by 1,748 different

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

6

students and around 40,000 sessions have been completed.
Table I shows the number of sessions by year, showing
increasing use of the system.

TABLE I
NUMBER OF SUBJECTS, ASSESSMENTS, STUDENTS AND SESSIONS BY

YEAR

Year Subjects Assessments Students Sessions
2009 1 6 130 244
2010 1 3 88 163
2011 1 4 86 216
2012 3 13 188 938
2013 2 8 170 1,589
2014 4 15 212 2,481
2015 5 24 371 3,382
2016 6 32 644 8,956
2017 9 68 826 14,515

In the following sections, we have selected some of the
subjects to illustrate the different features of the system and
system usage.

A. Compiler Construction

The SIETTE system has been used since 2001 in the
Compiler Construction course at the School of Computer
Science at the University of Malaga. The application of the
module to evaluate programming tasks was earlier introduced
in this subject back in 2009. The automatic assessment of
programming exercises was a component of the final score
of computer tests and other classical written exercises. Most
of the content has been reused at that time; firstly, some pro-
gramming tasks were used in summative assessments and later
were left open to students to practice. Table 3 shows the usage
data. The number of files submitted by the students indicates
the number of different tasks involved in the assessment. A
single submission might be a zipped file containing several
files.

The programming assignments, required the development of
a program written in C, LEX, and YACC, (currently in JAVA,
JFLEX, and CUP), 4 which implements the compiler or the
interpreter of a high-level language called PLX, which is a
simplified version of a C/JAVA-like programming language.
The language and the basic implementation are explained
during the course. In the final exam, students have to extend
a previous version of their own compiler code to cover some
new PLX language features. The code is around 2,000 lines.
For example, they are asked to include language functionality
for a new expression operator, or a new control sentence, or
support for a new data type, etc. Students have around six
hours to complete the exam in a controlled environment.

1) Validity studies: Validity is an important concern, espe-
cially in the early application of automatic assessment of these
programming tasks. In order to guarantee that the automatic
assessment produces results equivalent to human assessment,
we have undertaken various experiments, shown in Table II.

4LEX and YACC are classical scanner and parsing generator tools used
as part of the UNIX environment. JFLEX and CUP are equivalent tools for
JAVA.

A programming task was proposed and was defined in the
same way as an automatic assessment, with a clearly defined
stem, a clearly defined expected output, and a clearly defined
scoring schema. The students worked on this assignment and
submitted the files to the teacher. Another teacher marked
the exercise manually (following the scoring schema strictly).
After the score was obtained, an automatic assessment was
defined, and we fed the system with the files provided by
the students previously (ID=13887). That produced a new
score which was compared to the human score. A total of
34 exercises were submitted. The average score was 28.4 (std.
dev. = 33.5) points in the human score and 13.2 (std. dev.
= 24.1) in the automatic score. The correlation coefficient
between the two distributions was just 0.55. However, average
statistical data did not provide good information in this case. A
careful review of the data, showed two important facts: (1) the
human score was always higher than the computer score; and
(2) there were seven cases that were marked by the computer
as null, which explained almost all the differences. Removing
those cases, we found a new correlation coefficient that we
named the underlying correlation coefficient, which is very
high (0.98).

We repeated the experiment in September with a subset
of the same students (ID=14027). In this case, we did the
opposite; we first allowed only a single submission to the com-
puter assessment tool, and then a teacher manually inspected
the code, evaluated it, and resubmitted it to the computer
assessment tool after minor errors were resolved. In five
cases, it was found that a human evaluator would have not
considered the initial computer assessment to be correct. The
error detected in these cases varies: the students did not follow
the guidelines for file naming; they leave extra debugging
messages on the output; the output was redirected to a fixed
file, not to the standard output; etc. Discarding these cases,
the underlying correlation coefficient was 1.0, which is perfect
match.

We concluded that the differences in scoring between the
human and automatic assessment were explained by the fact
that the human was able to consider some errors as simple mis-
takes without major importance, while the computer applied
the rules strictly and consider the same errors as major and
marked them null. Thanks to this experiment, we learned that
we have to give more opportunities to students to correct their
minor mistakes in order to improve the validity of automatic
assessment.

TABLE II
CORRELATION BETWEEN AUTOMATIC AND HUMAN SCORING

ID Students
Human Score
Mean (s.d.)

Computer Score
Mean (s.d.)

Correlation
Coefficient

Incorrect
Cases

Underlying
Correlation
Coefficient

13887 34 28.4 (33.5) 13.2 (24.1) 0.55 7 0.98

14027 23 57.8 (17.2) 42.6 (32.3) 0.71 5 1.00

14747 52 49.26 (32.53) 45.25 (35.86) 0.92 7 1.00

A similar study was undertaken the following year with
a new group of students (ID=14747). In this case, three
submissions were allowed. Students were told that the final
score would be the average of the three submissions. If

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

7

we compare the first submission to the last submission, we
find a correlation coefficient of 0.92 and that 14 students
improved their scores. We then proceeded in the same way
as explained in the previous paragraph but only considered
the final submission. The goal was to detect if a fourth
submission of the students’ code, after removing minor errors
(according to the teacher criteria), would obtain a higher
score. In this case, we found just seven unfair scores (out
of 52), and the differences were much fewer. In addition to
the problems detected previously, we noted another source
of potential problems for automatic assessment: there were
minor differences in the server and the local environment.
Some (unnecessary) C libraries were not present in the server,
and that produced some unexpected compilation errors if the
students had referred to them in their code. These experiments
led us to improve the system by adding some facilities to
improve validity that are discussed in Section VI.

2) Reliability studies: Whenever more than a minimum of
students takes an assessment, SIETTE automatically computes
Cronbach’s α; Guttman’s λ4; and Spearman-Brown’s reliabil-
ity. At first glance, the reliability of the automatic assessment
is extremely high. In most cases, Cronbach’s α is above 0.9,
which is a very high value, and it is similar with the other
indicators. As expected, reliability increases with the number
of items. When a single program is submitted, which is quite
common in the Compiler Construction assessment, the number
of items is the number of components of the composed item,
that is, the number of different proofs.

The same students can submit the task several times, and
that could affect the measure of the reliability. However,
assessment reliability does not change very much if we take
just one session per student, i.e., the last or the highest
scoring submission. SIETTE allows filtering those data and
recalculating the indicators. Table III shows the reliability
indicators for the last 10 assessments of this subject. Here, the
indicators are calculated using just the highest scoring session
of each student. Reliability slightly increases in all cases.

TABLE III
RELIABILITY INDICATORS FOR THE LAST 10 ASSESSMENTS

ID #students #sessions All Sessions #Sessions Highest Score Session
α λ4 SB α λ4 SB

18347 131 836 0.99 1.00 1.00 131 0.98 1.00 0.99
18527 123 1133 0.97 0.98 0.99 123 0.96 0.98 0.98
19727 103 277 - - - 103 - - -
20167 96 127 0.86 0.71 0.76 96 0.99 0.84 0.89
20207 36 54 0.61 0.78 0.70 36 0.65 0.77 0.77
20487 89 724 0.96 0.98 0.99 89 0.98 0.99 0.99
22048 25 98 0.97 1.00 0.99 25 0.97 0.99 0.98
22287 62 432 0.92 0.98 0.96 62 0.91 0.97 0.92
26768 33 61 0.86 0.93 0.92 33 0.92 0.94 0.92
27948 35 290 0.96 0.99 0.99 35 0.97 1.0 1.0

3) Item, test, and student result analyzes: SIETTE provides
an interface that shows the classical test theory indicators for
each item, including item difficulty, discrimination, and point
biserial correlation between item and assessment result. The
item difficulty is simply defined as the percentage of cases that
have solved the item, while the item discrimination indicates
the difference between the percentage of success of high-
scoring and low-scoring students. In this case, the data differ
depending on whether we consider all sessions, or just the

highest scoring session submitted by the same student. Figure
5 shows a screenshot from the SIETTE interface for the test
with ID=18527, considering just the highest scoring session
of each student. In this table, rows are the items (proofs),
and columns show item identifier, number of valid cases,
difficulty index, corrected difficulty index (not applicable in
this case), discrimination index, and point biserial correlation.
The first row corresponds to the compilation proof, which is
accomplished by 100% of the valid submissions. This item has
no discrimination and it has been marked as not evaluable. The
rest of the items are correct, with more or less difficulty but
positive and high correlation with the test results. A low or
negative value in these columns will appear in red indicating
a potential problem with that proof. Using this interface, the
teacher can detect those problems at a glance.

Fig. 5. Example of item analysis. Classical test theory item indexes.

It is also important to analyze the internal correlation
between assessment items. A low correlation between one
item and the rest of the items might indicate that item is not
working in accordance with the rest of the items and suggest
that item should be removed to increase reliability. However,
a very high correlation close to 1.0 indicates that those items
(proofs) are continually returning the same information for the
final assessment, and therefore they are redundant. Figure 6
shows a partial view of the item correlation matrix for the
same assessment shown in Figure 5. The green cells indicate
positive meaningful correlation; the gray cells indicate low but
not significant correlation, and red cells (there are none in this
example) indicates negative correlation.

Items can be calibrated using IRT models. The calibration is
done using an external calibration service. Currently SIETTE
can call JICS (Java Item Calibration Service, which has
been implemented by our team) or the classical MULTILOG
[21]. A web service wrapper has been constructed in order
to call MULTILOG and receive the results. To accomplish
that, SIETTE incorporates an interface that arranges data and
generates the input file in MULTILOG format. It receives and
reads the returned file. Item parameters are presented to the
teacher who should approve the modification of previous data
if any exists (see Figure 8). The table in figure 7 shows the
current ICC parameters a, b, and c for each item. a*, b*, and c*
are the new proposed values. Information about model fitness

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

8

Fig. 6. Example of item analysis. Classical test theory item indexes. Pearson
correlation matrix among items.

is shown separately. The teacher can try filtering sessions to
increase the goodness of fit of the IRT models.

Fig. 7. IRT Calibration.

When the calibration is complete and the IRT parameters
have been defined for each item, the tasks can be reassessed
using IRT Bayesian or maximum likelihood criteria. This is
a data-driven technique so the scoring does not depend on
heuristic but rather on statistical behaviour of the different
proofs. Moreover, the IRT assessment can provide the distri-
bution of probability of the student having a given knowledge
level (in the scale defined by the teacher) as a result. That
distribution can be inspected for each student and can help
with decision-making in high-stakes assessment for those
students closer to the pass-no-pass border. Figure 8 shows
the distribution of probability of a given student having a
certain knowledge level on the scale 0 to 10 (commonly used
in Spain). For instance, the student shown in this figure has a
probability 0.91 of having knowledge between 4 and 5,and just
0.089 of having knowledge less than 5, which is the common
pass/no-pass threshold.

SIETTE also includes graphical representation of the Items
Characteristic Curves (ICC) as well as the information func-
tion for each item and the test information function (IIF/TIF),

Fig. 8. Student result analysis.

as shown in Figure 9. Roughly speaking, the ICC gives the
conditional probability of success for an average student with
a given knowledge level in this proof, while the IIF, witch
is closely related to the ICC, provides information about the
suitability of this proof for a given student knowledge level.
The TIF is the summary of all the IIFs involved in the test. For
instance, the TIF shown in figure 9 indicates that the test fairly
discriminates among students with a knowledge level between
1 and 7, but not students with a knowledge level above 8.
That is, if it is necessary to discriminate among students with
knowledge levels of 8, 9, or 10, the test should include more
difficult questions (see [17] for a better description of meaning
of these curves).

Fig. 9. IRT test information function.

B. Design & Analysis of Algorithms

The SIETTE system has been used since 2012 in the Design
& Analysis of Algorithms course at the School of Computer
Science of the University of Malaga. The course includes four
or five practice tasks that should be implemented in the Java
programming language. The proposed problems are classical
in a subject like this in which it is important to implement
efficient algorithms and to evaluate that the student code is
original. The system is used to automatically correct home
programming assignments.

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

9

1) Embedding External Program Verifiers: Before using
the SIETTE environment to correct student programs, correc-
tion in some cases was undertaken semi-automatically using
different methods. In some instances JUnit test cases were
developed to help with program verification. For instance, for
the N-Queens problem, the teacher developed a skeleton of the
program, which had to be completed by the student. He also
implemented different JUnit test cases to test whether or not
the student program found one or all the possible solutions and
check that the important methods were correctly implemented.
The SIETTE implementation is very straightforward. SIETTE
simply calls JUnit through the command line and checks that
the result is correct. A single line included in the SIETTE
script does the trick:

java -cp .:n-queens.jar:/usr/share/java/junit4-4.11.jar \
org.junit.runner.JUnitCore NQueensTest1 | head -2 | tail -1 == ... -> 10

The program complexity is another important issue to take
into account in this subject. To illustrate this issue, let us
focus on the maximum subarray problem, 5 which can be
implemented with algorithms of differing complexities. The
brute force solution is O(n2), and the divide and conquer is
O(nlog(n)). However, there is a better solution of O(n).

Analysing the present Java program complexity is difficult
and not always accurate. A library (called aeca.jar) for this
task was implemented in the last course and included exper-
imentally in the assessment. The program just tests the code
dynamically with different values of a parameter n, and checks
the execution time. The output is a table of n∗execT ime(n).
The program decides, from among a given set of complexity
functions (O(n), O(nlog(n)), O(n2), O(n3), etc..), which
is closer in the asymptote to the table values. This proof is
implemented in SIETTE by adding the following line to the
processing script:

java -Xmx1g -cp aeca.jar:. TestMaximumSubArray Complexity

That is, a test program that makes use of the aeca.jar API is
executed. It returns an estimation of the program complexity as
a label that could be the following: 1, N , NLOGN , N2, N3,
etc. The correct answer for the divide and conquer solution
should be NLOGN . This proof is included as part of the set
that the program should pass. It is beyond the scope of this
article to describe the details of this evaluation, which is an
interesting problem in itself. However, this is a good example
to show how the features of SIETTE item analysis can be used
to detect potential assessment problems.

In this particular case, Figure 10 shows the graphical
information for the item analysis based on the 151 selected
test sessions with ID=26828. A single session with the highest
score has been selected from each student. This is almost
the equivalent of selecting just the last submission of each
student. The relative frequency of responses indicates that this
proof has been passed 45% of the cases, (corresponding to
a complexity of O(nlog(n)) in the first line of the table)
while an unknown incorrect answer has been detected 30%

5This problem is briefly described in https://en.wikipedia.org/wiki/
Maximum subarray problem

of the cases (this case also includes incorrect programs,
shown in the second line of the table). An incorrect answer
corresponding to a complexity of O(n2) is detected in 4%
of the cases (third line of the table). An incorrect answer
corresponding to a complexity of O(n) is detected in 16%
of the cases (fourth line of the table), and in 7% of the cases,
the complexity is evaluated as constant (fifth line of the table).
The discrimination index is shown in the fourth column and
the point biserial correlation with the test result in the fifth
column. The graphical information represents positive values
to the right and negative to the left. If they are correct they
are shown in green; otherwise, they are shown in red to make
them more easily seen. Grey indicates that there are too few
data to be fully conclusive at 95% confidence. Some item
option (i.e., the ones corresponding to complexity of O(n))
have a positive correlation with a good assessment result where
negative values are expected, because it is a wrong option.
Therefore, this item (proof) is not working properly. Maybe
the test program is unable to correctly detect the complexity
in some cases, or there may be another explanation. In either
case, this is evidence that this proof should be not be used for
assessment and should be modified. For this reason, SIETTE
includes a feature to deactivate an item indicating, that it is
not available for grading.

Fig. 10. A potential problem with an item detected by SIETTE.

C. Haskell

The SIETTE system has been in use in the Introduction to
Programming course at the School of Mathematical Science
of the University of Malaga since 2015. The automatic as-
sessment of programming tasks has been principally used to
evaluate the students’ home programming assignments. These
assignments consist in the development of relatively small
functions (2 to 50 lines of code) in the Haskell programming
language. The score obtained in SIETTE represents 20% of
the final score. There are two main differences between this
subject and the subject presented in the previous section:
(1) the students are younger and have less experience with
programming; and (2) a single assessment is composed of 2
to 10 short exercises (tasks), and each exercise is evaluated
with 1 to 4 different proofs.

1) Authoring domain-specific evaluation: The SIETTE en-
vironment can support different program verification tools.
The Haskell language includes the module QuickCheck that
can be used to test a Haskell function. Some of the proofs
at Haskell are based on this tool, while others are based

https://en.wikipedia.org/wiki/Maximum_subarray_problem
https://en.wikipedia.org/wiki/Maximum_subarray_problem

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

10

on a comparison of the student solution with an alternative
implementation provided by the teacher. To speed up the
process of creating exercises and generating proofs, Haskell
teachers have developed their own specification file that is
parsed and merged with the student code. That parser has been
added as a plug-in to SIETTE. It allows teachers to enter the
specification file within the SIETTE authoring tool. Figure 11
shows the teacher interface, where they can directly define the
Haskell script and auxiliary functions that are going to be used
as the first proof of a task that requires implementing some
functions for polynomials. The teacher introduces his/her own
script that is going to be used to test the student code.

Fig. 11. SIETTE authoring tool.

Fig. 12. SIETTE item correction feedback.

Figure 12 shows the result after the evaluation has been
completed. The execution of the student program fails. The
script provided by the teacher is used to generate the feedback
indicating the cases that do not satisfy the stem specifications.
The student receives the feedback indicating the proofs that
have not passed, indicating the expected result and the result

Fig. 13. The histogram shows the relative frequencies of each item option
depending on the final assessment score.

given by the student code (Message: The program compiles
but does not give the expected results).

2) Item performance: In this subject, no errors have been
detected in the assessment proofs. However, SIETTE also
provides useful information about the main problem faced by
the students.

The assessment results are divided into 12 discrete cate-
gories within the range [−3,+3]. Figure 13 shows a histogram
with relative frequencies of the item options that correspond
to the different results of the first proof of a polynomials
exercise. The four options are: (1) Correct (represented in
green with ID=381766); (2) Incorrect submission, missing
files (represented in red with ID=381767); (3) The program
does not compile this proof, (represented in dark red with
ID=381768); and (4) The program compiles but does not gives
the expected results in all cases, (represented in dark red with
ID=381769). The X-axis represents the final score obtained
in the assessment that was included this task. It is clear that
the relative frequency of the correct option increases with the
final assessment score, while the others decrease.

V. COMPARISON WITH OTHER SYSTEMS

The main goal of automatic assessment systems is to
improve students’ programming skills, primarily in undergrad-
uate basic programming courses. Students can complete a large
number of exercises, which are evaluated quickly and get
immediate feedback, that does not depend on the personal
opinion of the academic staff. Since automatic assessment
first appeared, a large number of tools and systems have
been proposed. These systems have evolved from tools that
use verified the output of a source code to complex systems
that are integrated in Learning Management Systems (LMS)
and allow the tracking of students throughout the course. As
indicated in [5], new challenges have arisen in this field,
which assessment systems have been incorporating: integration
into LMS, obtaining detailed information on the process of

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

11

improving students’ skills, or the use of mobile applications
to increase student interest, among others.

There are currently several on line systems for automatic
assessment. These systems are used for automatic grading
of student homework assignments and/or as automatic judges
of programming competitions. They usually have an exercise
repository that, once a solution has been delivered, gives a
verdict on its correctness and functionality. Examples of these
systems are Web-CAT [22], Gradescope [23], UVa Online
Judge [24], or Judge.org [25]. The systems reviewed usually
have different features and are intended for different languages
and different students’ and teachers’ needs. None of these
systems use assessment theories in their grading mechanisms.

SIETTE shares many of the features present in these sys-
tems, such as techniques or strategies for evaluating programs,
scoring them automatically or integrating them into an LMS
such as Moodle. The most significantly different feature of
SIETTE is the way in which it deals with the final scoring
and analysis results.

Tables IV and V show information on various automatic
assessment systems using the comparison features proposed
in the reviews of [3] and [5].

The columns in Table IV refer to the following character-
istics of automatic systems.

• Authoring tools: Specifies if the system allows content to
be developed by filling forms and uploading proof files,
and/or assessment scripts.

• Supported languages: Programming languages for which
the system is able to evaluate tasks. In the case that the
system is not restricted to a given programming language,
it is labeled as Multilanguage.

• Self-assessment: The student takes an evaluation to know
his/her level, but the evaluation is not used as a grade by
the teacher. This is also called formative assessment [32].
The main system goal in this case is to provide detailed
feedback for the student to improve.

• Full-assessment: This is an evaluation that allows the
teacher to decide whether or not the student has passed
a certain level. Also referred to as summative assessment
[32]. The main system goal in this case is to obtain an
accurate score reflecting student knowledge.

• Work mode: The system can be a stand-alone application
(Standalone) or integrated in an LMS (Plug-in). The two
ways are not incompatible.

• Source program assessment procedures: Specifies which
characteristics the system might evaluate in a task such
as, compilation success; static code analysis; dynamic
code analysis; code style checking; software metrics;
comparison with a model solution, etc. If multiple source
methods can be applied this column is labeled Multiple.

• Sand-boxing: Indicates whether the system executes tasks
in a safe and independent environment, avoiding security
problems.

Table V on revised automatic evaluation systems shows the
principal characteristics related to the evaluation of the tasks.
The columns have the following meanings:

• Categorical grading: The result of the evaluation is ex-
pressed as a value belonging to a set of categories. Vari-

ous systems use the categories of the ACM International
Collegiate Programming Contest and are shown in the
table as ACM ICPC.

• Numerical grading: The evaluation result is a number
within a range of numerical values.

• Aggregated score procedure: This column refers to the
way in which the different features analyzed by the source
program assessment procedures are aggregated to obtain
a single numerical score. The options in this field are:
(1) Percentage, that is, the number of successful proofs
divided by the total number of proofs; (2) Heuristic
weighted score, that is, each proof is assigned a weight
in the final score according to the teacher’s criteria; and
(3) IRT-based criteria, based on a calibration process of
proof results.

• Feedback: The minimum feedback is just to inform the
student whether or not the program submitted compiles
and passes the set of proofs and provides the correct
solution. The next level is to indicate the score obtained
by different proofs. The system can provide a detailed
error report that, in some cases, can be reviewed manually
by the teacher. Finally, the feedback can even include re-
medial hints or an animated visualization of the program’s
execution.

• Result analysis: Specifies whether the system performs
any kind of analysis of the tests and tasks proposed
in order to find the best (and worst) of them from the
point of view of evaluating the student’s knowledge in
the subject.

• Manual assessment: Indicates whether it allows manual
evaluation in addition to automatic evaluation.

• Plagiarism detection: Indicates if the system has a way
to detect task plagiarism.

The automatic assessment system Jutge.org [25] exposes
the problem of selecting the most relevant test case when
evaluating a submission. The novelty of its approach is to
analyze incorrect submissions and test cases using data mining
techniques to discover the most relevant tests to find failures
and then use them to evaluate future submissions. This raises
the issue of finding the most relevant test cases or, in a broader
sense, answering the question of what the most relevant tasks
or questions to evaluate a student are. One way to answer this
question is by the main contribution presented in our proposal.
To the best our knowledge, what is not usually seen in other
automatic assessment systems, is the use of psychometric
techniques (such as IRT) to analyze and discover the questions
or tasks that most efficiently discern a student’s knowledge of
the subject matter we wish to judge and, ultimately, score.

Another principal contribution of our system to the field
is therefore represented by its systematization of the scoring
procedure. Previous systems have addressed scoring using
heuristic approaches only, or by leaving the scoring task to
the teacher. For this reason, in most cases the automatic
assessment of programing tasks is used just for computer home
assignments or formative assignment, where the score does not
play a relevant role. Scoring a programming task is difficult
per se, even for manual assessment. There are two issues: (1)

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

12

TABLE IV
COMPARISON WITH OTHER SYSTEMS (MAIN FEATURES)

System Authoring Tool Supported
Language

Self-
Assessment

Full-
Assessment

Source program
Assessment Procedures

Work Mode Sandboxing

Web-CAT [22] Yes Multilanguage No No Static analysis
Dynamic analysis
Student test

Standalone Yes

JAssess [26] No Java No No Compilation success Plug-in No
CTpracticals [27] Yes VDHL No Yes Comparison with behavior model Plug-in Yes
Mooshak [28] Yes Multilanguage Yes(*) No Dynamic analysis Standalone Yes
ViLLe [29] Yes Multilanguage No Yes Dynamic analysis,

Comparison with model
Plug-in No

KATTIS [30] Yes Multilanguage Yes Yes Dynamic analysis Standalone Yes
BOSS [31] Yes Multilanguage No Yes Multiple Standalone Yes
Jutge.org [25] Yes Multilanguage No Yes Dynamic analysis;

Syntactic analysis
Standalone Yes

ProgTest [16] Yes Java, C No No Dynamic Analysis Standalone No
SIETTE Yes Multilanguage Yes Yes Multiple Standalone

Plug-in
Yes

TABLE V
COMPARISON WITH OTHER SYSTEMS (SCORING FEATURES)

System Categorical
Grading

Numerical
Grading

Aggregated score
Procedure

Feedback
(Detailed Errors)

Result
Analysis

Manual
Assessment

Plagiarism
Detection

Web-CAT [22] ACM ICPC No N/A Score with
comments

Available dataset for
research

Yes No

JAssess [26] Yes No N/A No No Mandatory No
CTpracticals [27] Yes Yes Percentage Error report

Correct design
No Optional No

Mooshak [28] ACM ICPC No N/A Error report
(revised)

No Optional No

ViLLe [29] Yes Yes Percentage Correctness,
Visualization

No No No

KATTIS [30] ACM ICPC No N/A Correctness,
CPU time used

No No No

BOSS [31] No Yes Heuristic weighted Manual No Optional Yes
Jutge.org [25] Yes No N/A Error report Data-mining No No
ProgTest [16] No Yes Heuristic weighted Error report No No No
Siette [18] Yes Yes Percentage

Heuristic weighted
IRT

Error report Psychometric
analyzes

Optional Yes

setting the appropriate criteria for the correction, that is, decide
what is going to be scored and what is the contribution of
each part to the final score; and (2) determining if the criteria
are satisfied by the student submission. Of course, both issues
interact: a fuzzy criteria is harder to test.

VI. DISCUSSION

The experience using this framework has been positive.
The continuously increasing number of users indicates that
the system has proven useful. However, over the years certain
problems have arisen. In this section, we will try to summarize
our experience, the lessons learned, and the solutions we have
applied.

The stem that contains the exercise specifications should be
defined very carefully. The task to be done can be complex, but
the output format of the exercise should be simple enough to
be captured by a regular expression. The stem should describe
the output clearly, even in the failed cases. One good idea is to
provide a compiled version of the solution so that the students
can check different test cases. The test cases can be divided
into two groups:

1) public test cases, those given as examples with the stem.
2) private test cases.
There should always be private test cases in order to avoid

cheating. If no private cases are used, there is always a strategy
to produce the result simply by writing it to the output, without
processing. Private test cases should always be kept secret if

the exercise is repeated; otherwise, the evaluation reliability
could be compromised.

Students sometimes commit minor errors due to careless-
ness or due to misunderstanding of the stem. Even though
they can use different tools to validate their exercise before
submitting (compilers, code checkers, and even a compiled
version of the exercise proposed), they sometimes fail to notice
some minor errors (like typos) that will produce an incorrect
result in the automatic assessment tool. To solve this problem
we have adopted different strategies:

1) Allow more than one submission of the same exercise;
in fact, in our experience, the best choice is to allow
unlimited submissions and take the highest score.

2) Include detailed feedback that points out the error so
that the student can fix it and resubmit.

3) Optionally, it is possible to reassess submitted exercises.
This feature has developed as a key feature of SIETTE.

Teachers sometimes commit errors when preparing the
assessment, errors that are not noticed until after the test has
been taken. Modifying the test cases and reassessing would
therefore sometimes be useful. It may even be occasionally
necessary to manually correct minor typos in the student code.
To be able to do so, it is important to record all the source
files submitted, not just the assessment results. Automatic
evaluation is especially useful for the formative evaluation.
It motivates the student to ”beat the machine,” and so they
apply more time and effort to exercises, achieving higher

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

13

scores. For high-stakes exams, students are always told that the
score obtained at the end of the exercise is provisional. Some
teachers even decide not to show the score at the end of the
session. It is important to supervise the automatic assessment
process, and to be able to automatically re-assess, or even
manually, the code upon student demand.

Item independence is a desired feature to accomplish the
assumptions of IRT. If an exercise is evaluated according to
different perspectives, more independent items imply more
information. This is a goal that cannot always be accom-
plished. In those cases, it is desirable that easiest items are
evaluated first. If there is a dependency between items, and
they are sorted in ascending difficulty order, then a partial
credit model is a good solution. Otherwise, it is better to define
multiple components underlying items. The two approaches
are not incompatible. The first approach implies to use simple
underlying items, with one component each, while the current
trend is to use a single and longer exercise with independent
test cases. The number of components also depends on the
accuracy needed for the evaluation. It is not the same to take
a simple ”pass/no pass” decision that assigns a qualitative note
or a quantitative score for a ranking of students.

There is also a compromise between the amount of work
required by human evaluation of exercises and the construction
of automatically assessed exercises. Clearly if the number of
students is small, the amount of work required from the teacher
is much less. However, even if the student groups are small,
one advantage of the automatic assessment is that the work can
be re-used at any time. The creation of a bank of automatically
assessed exercises is a future investment.

Using IRT as a grading mechanism has proved to have
several advantages and a few drawbacks. Most of them are
listed in the literature and are common to other types of as-
sessments. In particular, for programming tasks, one advantage
of using IRT is that there is no need to use heuristics to assign
points to the different proofs. For instance, in the Compiler
Construction programming tasks, where 30 or 40 proofs are
triggered, the teacher does not have to define how many
”points” are assigned to each one. The system finds the item
characteristic curves and applies those data for grading that
increase reliability. On the other hand the calibration process
is not fully automated, and requires initial data, so the first
application of this assessment cannot provide results based
on this technique. In this case, the methodology we follow is
to provide an heuristic estimation based on the percentage of
proofs passed by the first application, and then calibrate the
items and change the scoring procedure to IRT. However, IRT
is not applicable when the number of proofs (items) in the
same assessment is small.

The system also offers the possibility to manually assess
the tasks, fully or partially, using SIETTE just to deal with the
submissions, and maybe to carry out some preliminary proofs.
In this case, the teacher should only define the assessment
criteria (called the rubric) but not the processing script. A
teacher should review the submissions and manually assign
them to one of the defined values in the rubric. The advantages
in this case are that the evaluation criteria of programming
exercises are clear but the previous amount of work needed to

develop proofs is reduced to a minimum. On the other hand the
teacher has to manually assess each exercise according to the
rubric, and so the students cannot have immediate feedback.
Although this feature is available, it has not yet been used.

VII. CONCLUSION

This article has presented a new technique to evaluate
programming assignments. The key idea is to conceive the
assessment of a programming assignment as a set of proofs
that are treated as items of Classical Test Theory (CTT) or
Item Response Theory (IRT) models. We have proven that this
approach is feasible by implementing an extension of SIETTE
to automatically assess and score programming assignments.
We have constructed upon SIETTE a system that is able to deal
with the whole process of authoring, submission, plagiarism
detection, and grading of student assignments.

The system includes most of the features that other systems
with the same objective have, and it has been designed for
programming language independence (see Section V). The
system supports everything from simple programming tasks,
such as problems posed to beginners, to complex tasks, where
the diagnosis of the program quality is based on several
proofs. In fact, the system is just a framework that can support
different types of proofs, from static to dynamic, and quality
testing. It allows external general purpose software engineering
tools to be used and/or the development of specific extensions
to deal with the code analysis of a given language or a set
of problems, like JUnit for Java or QuickCheck for Haskell.
Sections IV-B1 and IV-C1 show the integration of these tools.

One of the main contributions of this new implementation
is the use of well-founded assessment theories (CTT and IRT)
for grading and result analysis. The SIETTE system core is
based on these data-driven techniques (see Section III). This
extension conceptualizes programming task evaluation based
on different proofs, such as an evidence-based assessment,
which makes it possible to apply the entire arsenal that has
been developed in this field over the last few decades to
improve the information and quality of the assessment of
programming assignments (see Section VI). To the best of
our knowledge, this is a new and original contribution in the
area of programming assessment.

By applying these theories, validity and reliability of assess-
ments can be measured. The aim of this article has not been to
demonstrate that almost all the assessments developed within
this platform are valid and reliable, although this is the case,
but to show that it is something that can and should be included
in the assessment of programming tasks. This is especially
important for high-stakes assessment. See the validity studies
in Section IV-A1.

Another important opportunity offered by these techniques,
and implemented in SIETTE, is the possibility to carry out the
analysis of assessment results and item behavior (see Sections
IV-A3; IV-B1 and IV-C1). These analyzes are important to not
only gain an overall idea of the population distribution, that is,
if the students are passing certain proofs or not, but can also
indicate potential problems with certain proofs that should be
removed.

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

14

The experience over these last few years has been very
positive, which is proven by the continuously increasing
number of users. During this time many technical and usability
issues have been improved in response to users’ opinions,
both teachers and students. The system is available at https:
//www.siette.org, but most of the content of the programming
tasks is currently restricted to the Virtual Campus of the
University of Malaga (VC-UMA). We are working to develop
content that can be shared worldwide and integrated with other
systems.

REFERENCES

[1] V. Pieterse, “Automated assessment of programming as-
signments,” in Proc. CSERC 2013. Open Universiteit,
Heerlen, 2013, pp. 4:45–4:56.

[2] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-
based assessment of programming: A review,” J. Educ.
Resour. Comput., vol. 5, no. 3, Sep. 2005.

[3] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä,
“Review of recent systems for automatic assessment of
programming assignments,” in Proc. 10th Koli Calling
International Conference on Computing Education Re-
search, ser. Koli Calling ’10. New York, NY, USA:
ACM, 2010, pp. 86–93.

[4] R. Romli, S. Sulaiman, and K. Z. Z amli, “Automatic
programming assessment and test data generation a re-
view on its approaches,” in Proc. Information Technology
(ITSim), vol. 3. IEEE, 2010, pp. 1186–1192.

[5] J. C. Caiza and J. M. Del Alamo, “Programming assign-
ments automatic grading: review of tools and implemen-
tations,” in INTED2013, 2013, pp. 5691–5700.

[6] R. J. Mislevy, L. S. Steinberg, and R. G. Almond, “Focus
article: On the structure of educational assessments,”
Measurement: Interdisciplinary research and perspec-
tives, vol. 1, no. 1, pp. 3–62, 2003.

[7] R. J. Mislevy and M. M. Riconscente, “Evidence-
centered assessment design,” Handbook of test develop-
ment, pp. 61–90, 2006.

[8] M. J. Zieky, “An introduction to the use of evidence-
centered design in test development,” Psicologia Educa-
tiva, vol. 20, no. 2, pp. 79–87, 2014.

[9] S. Ohlsson, Constraint-Based Student Modeling. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994, pp. 167–
189.

[10] J. Galvez, E. Guzman, R. Conejo, A. Mitrovic, and
M. Mathews, “Data calibration for statistical-based as-
sessment in constraint-based tutors,” Knowledge-Based
Systems, vol. 97, no. Supplement C, pp. 11 – 23, 2016.

[11] J. Galvez, E. Guzman, and R. Conejo, Exploring Quality
of Constraints for Assessment in Problem Solving Envi-
ronments. Berlin: Springer, 2012, pp. 310–319.

[12] J. Galvez, E. Guzman, R. Conejo, and E. Millan, “Stu-
dent knowledge diagnosis using item response theory and
constraint-based modeling,” in Proc. AIED 2009. The
Netherlands: IOS Press, 2009, pp. 291–298.

[13] T. Wang, X. Su, Y. Wang, and P. Ma, “Semantic
similarity-based grading of student programs,” Inf. Softw.
Technol., vol. 49, no. 2, pp. 99–107, Feb. 2007.

[14] K. A. Naude, J. H. Greyling, and D. Vogts, “Marking
student programs using graph similarity,” Computers &
Education, vol. 54, no. 2, pp. 545 – 561, 2010.

[15] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kun-
cak, “Software verification and graph similarity for au-
tomated evaluation of students’ assignments,” Inf. Softw.
Technol., vol. 55, no. 6, pp. 1004–1016, Jun. 2013.

[16] D. M. d. Souza, S. Isotani, and E. F. Barbosa, “Teaching
novice programmers using progtest,” IJKL, vol. 10, no. 1,
pp. 60–77, 2015.

[17] R. K. Hambleton and H. Swaminathan, Item Response
Theory. Dordrecht: Springer Netherlands, 1985.

[18] R. Conejo, E. Guzmán, E. Millán, M. Trella, J. L. Pérez-
De-La-Cruz, and A. Rı́os, “Siette: A web-based tool
for adaptive testing,” International Journal of Artificial
Intelligence in Education, vol. 14, no. 1, pp. 29–61, 2004.

[19] R. Conejo, E. Guzmán, and M. Trella, “The SIETTE
automatic assessment environment,” I. J. Artificial Intel-
ligence in Education, vol. 26, no. 1, pp. 270–292, 2016.

[20] I. Arroyo, R. Conejo, E. Guzman, and B. P. Woolf,
“An adaptive web-based component for cognitive ability
estimation,” in Proc. AI-ED, 2001, pp. 456–466.

[21] D. Thiessen, “Multilog user’s guide, version 6,” Chicago:
Scientific Software International, 1991.

[22] “Web-CAT – the web based center for automated
testing,” 2003, accessed: 2013-08-11. [Online].
Available: http://www.web-cat.org

[23] A. Singh, S. Karayev, K. Gutowski, and P. Abbeel,
“Gradescope: A fast, flexible, and fair system for scalable
assessment of handwritten work,” in Proceedings of
the Fourth (2017) ACM Conference on Learning
@ Scale, ser. L@S ’17. New York, NY, USA:
ACM, 2017, pp. 81–88. [Online]. Available: http:
//doi.acm.org/10.1145/3051457.3051466

[24] M. A. Revilla, S. Manzoor, and R. Liu, “Competitive
learning in informatics: The uva online judge experi-
ence,” Olympiads in Informatics, vol. 2, pp. 131–148,
2008.

[25] J. Petit, S. Roura, J. Carmona, J. Cortadella, A. Duch,
O. Gimenez, A. Mani, J. Mas, E. Rodriguez-Carbonella,
A. Rubio, J. de San Pedro, and V. Divya, “Jutge.org:
Characteristics and experiences,” IEEE Transactions on
Learning Technologies, no. 99, pp. 1–1, 2017.

[26] N. Yusof, N. A. M. Zin, and N. S. Adnan, “Java program-
ming assessment tool for assignment module in moodle
e-learning system,” Procedia - Social and Behavioral
Sciences, vol. 56, no. Supplement C, pp. 767 – 773, 2012.

[27] E. Gutiérrez, M. A. Trenas, J. Ramos, F. Corbera, and
S. Romero, “A new moodle module supporting automatic
verification of vhdl-based assignments,” Comput. Educ.,
vol. 54, no. 2, pp. 562–577, Feb. 2010.

[28] J. Leal and F. Silva, “Mooshak: A web-based multi-site
programming contest system,” vol. 33, pp. 567–581, 05
2003.

[29] V. Karavirta, R. Haavisto, E. Kaila, M.-J. Laakso, T. Ra-
jala, and T. Salakoski, “Interactive learning content for
introductory computer science course using the ville
exercise framework,” in 2015 Int. Conf. on Learning and

https://www.siette.org
https://www.siette.org
http://www.web-cat.org
http://doi.acm.org/10.1145/3051457.3051466
http://doi.acm.org/10.1145/3051457.3051466

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2018.2876249, IEEE
Transactions on Learning Technologies

15

Teaching in Computing and Engineering, April 2015, pp.
9–16.

[30] E. Enstrom, G. Kreitz, F. Niemela, P. Soderman, and
V. Kann, “Five years with kattis – using an automated
assessment system in teaching,” in FIE 2011, Oct 2011,
pp. T3J–1–T3J–6.

[31] M. Joy, N. Griffiths, and R. Boyatt, “The boss online
submission and assessment system,” J. Educ. Resour.
Comput., vol. 5, no. 3, Sep. 2005.

[32] W. Harlen and M. James, “Assessment and learning:
differences and relationships between formative and sum-
mative assessment,” Assessment in Education: Princi-
ples, Policy & practice, vol. 4, no. 3, pp. 365–379, 1997.

Ricardo Conejo (MS & PhD in Ingeniero de
Caminos, Canales y Puertos, UPM, Madrid) holds
the position of Professor (Full) in the Languages
and Computer Science Department of the University
of Malaga, Spain, where he has worked since 1986.
He has taught Compilers and Programming for more
than 30 years. His research interests currently focus
on adaptive testing, student knowledge diagnosis,
and intelligent tutoring systems. He has also worked
on fuzzy logic, model-based diagnosis, multi-agent
systems, and artificial intelligence applied to civil

engineering. Prof. Conejo is a regular member of program committees of inter-
national conferences, such as User Modeling Adaptation, and Personalization
(UMAP), Intelligent Tutoring Systems (ITS), and Artificial Intelligence in
Education (AIED) and is an associate editor of IEEE Transaction on Learning
Technologies.

Beatriz Barros (MS, Computer Science, PhD, Arti-
ficial Intelligence, UPM, Madrid) holds the position
of Professor (Full) in the University of Malaga. She
teaches Programming in several courses in Computer
and Engineering degree programs. Her research in-
terests include the design of adaptive and interactive
learning environments, and collaborative learning
systems.

Manuel F. Bertoa holds a degree in Telecommuni-
cations Engineering from UPM, Madrid and a PhD
from the University of Malaga. For 16 years, his
professional career has been mainly in the private
sector in several telecommunications and computer
companies but also includes work in public admin-
istration. His research activity focuses on software
quality and, currently, LMS.

VIII. ANNEX. LIST OF ABBREVIATION

CBM - Constraint Based Modeling.
CAT - Computer Adaptive Testing.
CTT - Classical Text Theory
ECD - Evidence-Centered Design
GRM - Graded Response Model.
ICC - Item Characteristic Curve.
IIF - Item Information Function.
IRT - Item response Theory.
ITS - Intelligent Tutoring Systems
JICS - Java Item Calibration System.
LMS - Learning Management Systems.
SFIP - SIETTE File-Item Player.
SPS - SIETTE Processing Script.
TIF - Test Information Function.
VC-UMA - Virtual Campus of the University of Malaga

