
Measuring the Quality of Assessment
Using Questions Generated
from the Semantic Web

Ricardo Conejo(B), Beatriz Barros, and Manuel F. Bertoa

University of Malaga, Malaga, Spain
conejo@lcc.uma.es

Abstract. This article describes a new feature of the adaptive assess-
ment system SIETTE that allows for the static and dynamic generation
of questions from tables of data for knowledge assessment. Almost the
same approach can be used to generate questions from data collected in a
spreadsheet, a database query, or a semantic web query using SPARQL.
The main problem faced with question generation is ensuring that the
questions are valid for assessment. For this reason, most of the existing
systems propose to use this mechanism only for low-stakes assessments.
In this paper, we propose a methodology to control question generation
quality and measure the impact of potential invalid instances on the final
score as well as recommend some strategies to overcome these problems.

Keywords: Question generation · Semantic web
Automatic assessment

1 Introduction

Question generation from databases [1], and questions from linked open data
(LOD), in particular, are a potential source of an unlimited number of ques-
tions for a wide variety of uses. For example, Le et al. [2] distinguish between
knowledge/skills acquisition, tutorial dialogues, and knowledge assessment.

This article focus on question generation for knowledge assessment, especially
when the questions are generated from semantic web sources, like Wikidata
or DBPedia. There are already a number of systems that have identified this
potential use [3–5]. However, the messy structure and the number of invalid
instances that are generated among the valid ones, implies that most of these
systems only aim at recreational or self-assessment use [6–8].

We face the problem of using generated questions for high-stakes knowledge
assessment in SIETTE, defining a methodology to reduce the number of incorrect
instances, measuring the impact of potential invalid instances on the assessment
score, and defining some strategies to correct and reduce these problems.

c© Springer International Publishing AG, part of Springer Nature 2018
C. Penstein Rosé et al. (Eds.): AIED 2018, LNAI 10947, pp. 57–69, 2018.
https://doi.org/10.1007/978-3-319-93843-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93843-1_5&domain=pdf

58 R. Conejo et al.

2 Question Generation in SIETTE

SIETTE is a general-purpose, domain-independent assessment environment (see
[9,10]). The system incorporates item banking, test building, analysis, delivery
and result presentation. It supports classical test theory (CTT), item response
theory (IRT), and computer-adaptive testing (CAT). Three main types of item
models are supported: (1) multiple choice, single answer questions (MCQ-SA);
(2) Multiple choice, multiple answer questions (MCQ-MA); and (3) short answer
questions (SAQ). These are just the three internal models that SIETTE uses.
Any other type of question that SIETTE can deal with (like sorting, correspon-
dence, drag and drop, etc.) are represented by one of the item models.

The first two item models are simpler to evaluate, but the third one requires
an engine that recognizes the student’s answer and assigns it into a given pat-
tern solution. SIETTE provides different types of patterns for different uses.
The most commonly used are regular expression patterns. For instance, a ques-
tion could be “Who is the composer of the Moonlight Sonata?”. The pattern
“{Ludwig {van}} Beethoven” will accept answers like Beethoven or Ludwig van
Beethoven. Multiple patterns can be used for the same question. Additionally, at
a teacher’s option, patterns can ignore case, accented characters, white spaces,
and/or punctuation symbols. They can also includes numerical ranges, mag-
nitudes, and more. If the response of a question is a number, SIETTE allows
the construction of patterns that include a variable range. For instance, the
SIETTE pattern “[3,14%1]” will accept any number close to π, and the SIETTE
pattern [1450#1500] will accept any number between this range. Magnitudes can
be added to numerical ranges to recognize different expressions, meaning that
[72 km/h%1] will also recognize 20 m/s. Questions might have several correct
answer patterns, and even patterns to recognize common incorrect answers, in
order to provide accurate feedback.

In some ways, it is easier to generate good SAQs than good MCQs. For
the first type, it is necessary to generate a pattern that recognizes the response,
which is very easy with numerical values and single-word text. In the second case
the main difficulty is to generate alternative options (often called distractors)
that are plausible. We will revisit this issue later.

On the other hand, SIETTE can generate questions from templates written in
JSP, or any other server-side script language. For instance, a question template
that generates two numbers between 0 and 5 and asks for their sum could be:

<%
int x = Math.abs(siette.util.Random.nextInt() % 5) + 1;
int y = Math.abs(siette.util.Random.nextInt() % 5) + 1;
int z = x+y;

%>
What is the result of this operation:

<center> <%= x %> + <%= y %> </center>

An important detail is that SIETTE uses its own Random class, that is fixed
by setting a seed, for each question according to the question and assessment ses-
sion id, so the template will always generate the same random instance each time

Measuring the Quality of Assessment Using Questions 59

it is called by the same test session. This is important because: (1) there is no
need to save the instance itself, just the question template and the seed; and (2)
each time the question is posed or reviewed in a test session, the same instance
is generated, allowing a user to go back and forth during an assessment. It also
allows the teachers to review the assessment session without changing the orig-
inally posed instance. On the other hand, this approach has the drawback that
if the structure of the question template is changed after the student responds,
the instances might differ. However, this is easily solved by locking the question
templates once they are posed.

In the simpler cases, the templates generates random numbers or strings that
are inserted in the question. A first extension of this technique is the generation of
questions from tables containing a data set. To illustrate this implementation, we
introduce the example of the periodic table. Suppose we have a spreadsheet con-
taining 103 rows corresponding to the first 103 chemical elements. Columns are
labeled NAME, SYMBOL, ATOMIC NUMBER, and so on. From this spread-
sheet, it is possible to generate multiple questions, for instance, the symbol of a
given element:

<%@page import="siette.util.corpus.Table"%>
<%

Table table = new Table("demo/periodic-table.xls");
String[] element = table.select();
String name = table.get(element, "NAME");
String symbol = table.get(element, "SYMBOL");

%>
What is the symbol for the chemical element "<i><%= name %></i>"?

There are many other possible question templates that can be generated
from the same table. The easiest way is to generate SAQs, but other types are
also possible, like Which of these three elements has the lowest atomic number?
(MCQ-SA question) or Select from among these six, all the elements that have
a density greater than lead (MCQ-MA question).

The following extension is to read data from a database, rather than from
a spreadsheet. As an example, we have used the database from project TREE
[11], that contains 32 tables with information about 322 European tree species,
including images labeled with metadata that describes them.

<%@page import="siette.util.corpus.DatabaseTable"%>
<%

String query = "SELECT S.BINOMIAL, S.COMMON_NAME, P.IMG "
+ " FROM SPECIES S JOIN PHOTOS P ON P.SPECIE = S.SPECIE "
+ " WHERE P.FEATURE=’Leaf’ "
;

DatabaseTable table = new DatabaseTable("demo/tree.properties", query);
String[] plant = table.select();
String img = table.get(plant, "IMG");
String binomial = table.get(plant, "BINOMIAL");
String plant_name = table.get(plant, "NOMBRE");

%>
Write the scientific name of the specie that have this leaf:
<center> <IMG SRC=’<%= img %>’> </center>

60 R. Conejo et al.

In this case, the accepted pattern might be the binomial scientific name or
the common name, although in this case the query should be more complex to
cover all possible responses.

The next step is the extension to query from the semantic web using
SPARQL. The idea is similar to the previous implementation, but the data
source is broader. As an example, the following query from DBpedia generates
questions about the flag of a given country.

<%@page import="siette.util.corpus.WebTable"%>
<%
String query = "SELECT DISTINCT ?nombre ?name ?population ?flag ?img "
+"WHERE { "
+" ?country a dbpedia-owl:Country ; rdfs:label ?name ; dbo:flag ?flag . "
+" ?country ?hasPopulation ?population ; dbo:thumbnail ?img . "
+" ?country dct:subject dbc:Member_states_of_the_United_Nations "
+" FILTER (langMatches(lang(?name), \"en\")) "
+" FILTER (?population > 1000000) "
+"} "
;

WebTable table = new WebTable("http://dbpedia.org/sparql",query);
String[] country = table.select();
String name = table.get(country, "name");
String img = table.get(country, "img");

%>
<center>
Which is the country of this flag?

<center><IMG src="<%= img %>"/>
</center>

Notice that the query has restricted the set of countries to those that are
members of the United Nations, and have more that 1 million inhabitants.

In the same way, it is possible to generate questions like Who is the painter of
this picture? (+image) or Who is the composer of this musical work? (+sound).
Most of the current approaches to question generation from the Semantic Web
generate MCQs [4,12,13]. This approach makes it easier to recognize the correct
student response, but it makes it much more difficult to generate appropriate
questions. The key point is that options should be plausible. To accomplish this,
these systems define a distance between possible responses based on the amount
of metadata that matches both the correct answer and the alternatives and other
ontology distance measures. Practical results are not always satisfactory. More-
over, generating SAQs usually involves just a single record from the database,
while generating multiple choices involves multiple records. Reducing the num-
ber of records decrease the potential problems for generating an invalid question
(see next section). Nevertheless, deep question generation may involves multiple
records and relations [14,15].

Additionally, it is possible to generate hints or feedbacks by selecting some
important feature and displaying one or two of the first sentences from the
rdfs:comment field. For instance, in a case of where the correct answer is
Beethoven, the hint could be was a German composer and pianist. A crucial
figure in the transition between the Classical and Romantic eras in Western music
art; he remains one of the most famous and influential of all composers. Of course,
this requires removing any text that matches the correct response pattern. Later
paragraphs might give less obvious hints, like His best known compositions include
9 symphonies, 5 piano concertos, 1 violin concerto, 32 piano sonatas, 16 string

Measuring the Quality of Assessment Using Questions 61

quartets, his great Mass the Missa solemnis, and 1 opera. Another way to gener-
ate hints is by selecting other similar records. For instance, if we are asking for a
composition by Beethoven, a hint could be This other piece was composed by the
same musician (+sound), which is easily obtained with a complementary query.

It is not possible to guarantee that the pattern will match 100% of students’
responses. However, SIETTE includes a simple mechanism that displays all stu-
dent responses on a single page, allowing for modification and reassessment of
the pattern (see Fig. 1). This final step achieves 100% correction of actual stu-
dent’s responses, but implies an assessment review, which as we will see, is also
necessary when dealing with invalid instances (see Subsect. 4.2)

Fig. 1. Listing of all patterns and students’ answers for a botany question

3 Problems with Generated Questions

The previous section outlined the technicalities involved in question generation
from tables. However, the main problem is not generating the question but
ensuring its quality and validity. The technical procedure is the same in the
three cases, but there are differences between using a spreadsheet, database or
semantic web data. In the first case, the table is uploaded by the teacher to the
SIETTE environment. It is commonly constructed for assessment purpose, has
a relatively low fixed number of rows, and can be edited by the teacher in case a
mistake is detected. In the second case, the database is bigger and the data are
mostly correct, but it might not be under the teacher’s control. In the last case,
the database is huge but there are a significant number of potential problems
with data that are not correctly labeled.

62 R. Conejo et al.

Of course, a trivial solution for the problem of generating questions from
uncontrolled sources is to create local dumps, that is, generate a spreadsheet or
a database from a semantic web query and manually review each record. Another
trivial solution (which is also implemented in SIETTE) is to produce a set of
static (fixed) instances from a template question, add them to the item bank as
normal questions, and review them one by one. These trivial approaches also have
its drawbacks because the dynamic behavior is lost, and future changes in the
database do not affect the generated questions. Moreover, it might require larger
space to store the generated questions, with possible implications for system
efficiency. Consider a small number of queries that produce a large number of
instances. In this case, the item bank will be filled up with several copies of
similar questions. This fact might reduce, for instance, the efficiency of adaptive
item selection process. On the other hand, manually reviewing of a huge number
of generated questions would be a very tedious task.

In the rest of the paper, we will focus on the problem of dynamic question
generation using semantic web queries, which is the most challenging feature.
Techniques for detecting and correcting low-quality items can be applied in the
three cases, but there are different sources of problems. As a result, we face
different problems when questions are generated from semantic web queries, like
those detailed below:

1. The first problem is that the databases might not be completely correctly
labeled. We have tried DBpedia data with toy examples like the composer
of a musical work and found some mislabeled pieces. However, this source of
problems is rare.

2. Another source of problems is missing content. For instance, when we tried
the query about flags described in the previous section, the link to the Swiss
flag was broken. This problem can be avoided at run time by checking the
link previously and generating a different instance if there is a broken link.

3. A third type of failure is related to “undesired” or “unexpected” content.
This happens, for instance, with a first version of the flags question, when
the query in the template generated a question for the flag of Prussia or the
flag of Faeroe Islands which is, in fact a country within Denmark, or for the
flag of Nuaru, which is a very small island in Micronesia.

4. Another source of problems is the incompleteness of the response pattern in
some particular cases. This occurs when the general procedure of construct-
ing the pattern fails for a given instance. For instance, the pattern {United
States of} America which is constructed for country names does not rec-
ognize the simpler answer USA. This type of problems can be avoided by
carefully refining the SPARQL query and adding some alternative patterns
by using redirection and/or disambiguating properties (for instance, by using
the property skos:altLabel to gives name variations). The debug of this
problem is done by random approaches, which is generating random test
cases until a wrong case appears, correcting the query in that case, and then
continuing with the debugging. However, this procedure does not guarantee
complete success.

Measuring the Quality of Assessment Using Questions 63

4 Measuring the Quality of Assessment

Depending on the desired use of the question templates, problems that arise
can be more or less important, and the procedures to correct them should be
more or less sophisticated. Suppose there is a test with n questions coming from
n different templates that comes from queries that generating valid instances
with a probability p. Further, the test is used for fun or for self-assessment.
For high values of p (i.e., for p > 0.90) there is no need for further refinement.
The user will notice the missing content and skip that question without further
consequences.

If the question belongs to a high-stakes assessment, a similar precision might
not be acceptable, because for a large population of students, there would be
cases in which a relevant number of instance questions will be invalid, and the
final score may be affected. In this case, we have to consider not just the average
case, but the worst case that might occur among the total number of students.
What differentiates these cases is the concept known as “test and score reliabil-
ity”. Informally speaking, test reliability refers to the degree to which a test is
consistent and stable in measuring what it is intended to measure. Score reli-
ability refers to the confidence interval in which the true score of a subject is
included.

CTT has proposed several definitions of test reliability [16], and one of the
most commonly used is based on the concept of a parallel test, meaning that if
a test is repeated with a similar question composition, the results should be the
same. There are many statistics proposed to estimate the internal consistency
reliability, commonly shortened as ρxx′ . The most familiar are the Spearman-
Brown, Guttman-Flannagan’s λ4, Kuder-Richardson’s KR-20 or KR-21, and
Cronbach’s α. Test reliability varies from −1 to 1. Even in the most carefully
manually prepared test, test reliability is not 1. Values over 0.70 are considered
good enough.

The true score confidence interval can be estimated assuming normal error
distribution as X ±zα/2σx

√
1 − ρxx′ , where X is the score obtained in the test, α

is the confidence level, and σ2
x is the variance of the whole test. If a test contains

an invalid question, the student will always fail it, so test reliability will be
reduced and variance will increase and, likewise, the interval will also increase.

However, if the number of incorrect questions is small compared to the num-
ber of questions in the test, the final reliability might not be compromised.

The research interest at this point is to be aware of the advantages and
drawbacks of question generation, quantify the problem, and establish limits of
acceptance as in any other engineering activity, implementing quality control pro-
cedures previous to the application of the test (see Sect. 4.1). Fortunately, even
in high-stakes exams, there are no irremediable consequences, and an assess-
ment can be reviewed. We are also interested in procedures to automatically or
semi-automatically detect failures, correct them and reassess (see Sect. 4.2).

64 R. Conejo et al.

4.1 Preliminary Question Analysis

Question generation from huge databases is a kind of industrial production pro-
cess, and thus, the same quality measurements should be taken. We distinguish
two separate phases: software testing and statistical testing.

First, the template query should be proved and refined as much as possible to
avoid undesirable results. We call this phase software testing, because software
modification techniques are used to improve the question quality. However, as
was exemplified in the previous section, query refinement reduces but does not
eliminate all potential errors. Moreover, the successive refinements might intro-
duce new invalid instances or impose unnecessary limits on potential instances
candidates. To sum up, there is a limit in what can be obtained with software
testing.

The first step of the statistical testing phase is to establish a desired confi-
dence level and quantify the expected errors. As was suggested in the previous
section, confidence level depends on the assessment goal. Suppose a test with n
questions coming from n templates that comes from queries where each one gen-
erates a valid instance with probability p, the probability of having a maximum
of w wrong instances in the test can be obtained by the cumulative binomial
distribution

pw = Pr(X ≤ w) =
w∑

i=0

(
n
i

)
pn(1 − p)n−i

If m students take the test, the probability of having all sessions with less than
w wrong instances is pm

w .
In the next section, we will see that wrong instances can be removed and the

test can be reassessed, but there would be a side effect in test reliability, so it is
desirable to keep w below the acceptable limits, thus ensuring that p, which is
not known, is below a threshold.

Proceeding in the opposite direction, assuming the value of w is desired
to be less than a given number (fixed according to the maximum acceptable
proportion of wrong instances in any test), the confidence level would be pw for
a single session and pm

w the confidence level that it is not going to occur in any of
the m test sessions. For instance, in a test on n = 30 questions, the probability
of that any of the m = 250 includes less than w = 3 invalid instances (less than
the 10%) would be pm

w ≥ 0.945 if the probability of a single failure is p ≤ 0.01.
Another way of viewing the situation is to predict the number of sessions with w
errors. In this case, 73.9% of the cases will have no incorrect instance; 22.4% will
include just one failure; 3.2% will include 2 failures; 0.3% will include 3 failures;
and only 0.0012% sessions will include 4 or more.

4.2 Posterior Question Analysis

Achieving 100% accuracy in all cases is almost impossible, even with manually
generated static questions. For this reason, SIETTE includes a review procedure
that allows for editing of the assessment setting and reassessing all assessment

Measuring the Quality of Assessment Using Questions 65

sessions according to the given responses. The procedure is easy and can be done
with a few clicks.

This procedure is initiated if the teacher or any student detects a failure in
the test and request for an assessment review. To facilitate this task, SIETTE
can optionally include a comment box beneath each question to collect during-
test comments from the student for the posed question. All student comments
are displayed together for the same question, so the teacher can evaluate if that
question has some kind of misbehavior. There is also built-in automatic detection
of incorrect questions that will be explained later. There are two possible cases
of incorrect questions: (1) questions with a correct answer different from the one
that is set for MCQ, or questions that have an incorrect or incomplete responses
pattern for SAQ; and (2) questions that have a problem with the stem and
could not be answered correctly. In the first case, the solution is to change the
correct answer to the right one or provide a new or better pattern, but in the
second, the only remedy is to remove that question from the assessment and
reassess according to the remaining (n − k) questions, supposing k items should
be removed. The reduction in test reliability can be obtained by applying the
Spearman-Brown prophecy formula

ρ∗
xx′ =

Rρxx′

1 + (R − 1)ρxx′
,

where R is the ratio between assessment lengths, that is, n/(n−k). Table 1 shows
the impact on reliability according to the percentage of items lost. Table 2 shows
the percentage of variation of the confidence interval.

Table 1. New reliability ρ∗
xx′ as a function of original reliability and percentage of

invalid questions

ρxx′ 50% 40% 30% 20% 10% 5% 2.5%
0.70 0.538 0.583 0.620 0.651 0.677 0.689 0.696
0.75 0.600 0.643 0.677 0.706 0.730 0.740 0.746
0.80 0.667 0.706 0.737 0.762 0.783 0.792 0.797
0.85 0.739 0.773 0.799 0.819 0.836 0.843 0.847
0,90 0.818 0.844 0.863 0.878 0.890 0.895 0.898
0,95 0.905 0.919 0.930 0.938 0.945 0.948 0.949

A reduction in reliability implies that the standard error increases, and so
does the confidence interval for a given confidence level α. The variation is given
by the ratio

√
1 − ρ∗

xx′/
√

1 − ρxx′ . Table 2 indicates the ratio for different com-
binations of original reliability and percentage of items lost. According to these
tables, the number of test items, and the assessment application, it is possi-
ble to decide which is the maximum number of items that eventually might be

66 R. Conejo et al.

invalidated. For instance, if an assessment is composed of 30 items, and has a
reliability of 0.80, removing three items will imply that the confidence interval
of the final score will increase 4.3%. Of course, the decision can be the other
way around, that is, increasing the assessment length 10% (see [16] for further
details about reliability and quality of test scores).

Table 2. Ratio of standard errors before and after removing a given percentage of
questions

ρxx′ 50% 40% 30% 20% 10% 5% 2.5%
0.70 1.240 1.179 1.125 1.078 1.037 1.018 1.007
0.75 1.265 1.195 1.136 1.085 1.040 1.019 1.008
0.80 1.219 1.213 1.147 1.091 1.043 1.021 1.008
0.85 1.319 1.231 1.159 1.098 1.045 1.022 1.009
0,90 1.348 1.250 1.170 1.104 1.048 1.023 1.009
0,95 1.380 1.270 1.183 1.111 1.051 1.025 1.010

The detection of incorrect instances can be done automatically using psy-
chometric item analysis tools that are already integrated in SIETTE. There are
three simple measures that allow for early detection of invalid instances. The
difficulty index is defined as the proportion of students who answered the item
correctly p = C

N where C is the number of student that have answered the item
correctly, and N is the total number of students. The discrimination index is
defined as the difference between the ratio of hits of the first (p1q) and fourth
quartiles (p4q). That is, the whole sample is divided into four parts according to
the final score obtained in the assessment. The difficulty index is computed for
the highest and lowest score parts, and the discrimination index is the difference
between both: D = p4q −p1q. The point biserial correlation between the response
and the item’s total score is a good indicator of the item quality. IRT parameters
can also be used for instance analysis.

An invalid instance will have a difficulty index and a discrimination index
equal to zero (or very close to zero if we consider random responses). The dis-
crimination index will help to identify not only invalid instances, but also those
instances that are not valid for assessment, meaning those that do not relate to
the knowledge we are measuring with the assessment.

Once the invalid items or instances have been detected, they are marked
as canceled in the item pool. The test session is reassessed, and those questions
marked as canceled are considered to have not been posed in every session where
they might have appeared. Notice that if the percentage of invalid questions
generated by a given template is small, this process will still significantly reduce
that figure because the instances marked as canceled will be avoided in future
assessment sessions. Figure 2 shows the indicators obtained for all the instances
of a given template, the cancel slider and the reassess button.

Measuring the Quality of Assessment Using Questions 67

Fig. 2. Listing all instances’ indicators to allow canceling of incorrect instances

Measuring difficulty and discrimination indexes is just one of many easy ways
to control item quality. SIETTE also includes IRT procedures to calibrate the
item bank, obtaining the IRT parameters. To use them, it is also a good idea to
use anchor items, which are items that appears in every session and that can be
used to establish a common ground.

The dynamic analysis might also suggest that the question generation tem-
plate produces items with very different IRT item parameters; that is, instances
generated by the same template that behave differently. In this case, the best
strategy is to split the original template into two or more templates to guarantee
fully isomorphic items.

5 Conclusions

Using public databases and the semantic web as source for question generation
has a high use potential. However, current applications are restricted to low-
stakes assessments. In order to use them for high-stakes assessments, we should
be aware of for implications and establish quality control measures and review
procedures to ensure the assessment validity and reliability. Following these rules,
it is perfectly possible to use this immense source of knowledge for any type of
assessment. We plan to apply this technique to generate questions for botany
courses at Madrid Polytechnic University.

To sum up, the conclusions of this article can be summarized as follow: (1)
generating SAQs reduces the number of invalid questions; (2) invalid questions
can be detected manually or automatically by using item analysis techniques; (3)
canceling invalid questions and re-assessing guarantees a valid assessment; and

68 R. Conejo et al.

(4) the effect of using invalid questions can be measured and acceptance limits
can be established. We have implemented extensions of the SIETTE authoring
tool that make it easier to accomplish these tasks. The system can be accessed
at http://www.siette.org, where some sample tests, in Spanish and English, can
be found in the Demo area.

References

1. Chaudhri, V.K., Clark, P.E., Overholtzer, A., Spaulding, A.: Question generation
from a knowledge base. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E.
(eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 54–65. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13704-9 5

2. Le, N.-T., Kojiri, T., Pinkwart, N.: Automatic question generation for educational
applications – the state of art. In: van Do, T., Thi, H.A.L., Nguyen, N.T. (eds.)
Advanced Computational Methods for Knowledge Engineering. AISC, vol. 282, pp.
325–338. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06569-4 24

3. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C., Gerber, D., Cimiano,
P.: Template-based question answering over RDF data. In: Proceedings of the 21st
International Conference on World Wide Web, WWW 2012, pp. 639. ACM Press,
New York (2012)

4. Tamura, Y., Takase, Y., Hayashi, Y., Nakano, Y.I.: Generating quizzes for history
learning based on wikipedia articles. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2015.
LNCS, vol. 9192, pp. 337–346. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-20609-7 32

5. Foulonneau, M., Ras, E.: Using educational domain models for automatic item
generation beyond factual knowledge assessment. In: Hernández-Leo, D., Ley, T.,
Klamma, R., Harrer, A. (eds.) EC-TEL 2013. LNCS, vol. 8095, pp. 442–447.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40814-4 36

6. Cablé, B., Guin, N., Lefevre, M.: An authoring tool for semi-automatic generation
of self-assessment exercises. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.)
AIED 2013. LNCS (LNAI), vol. 7926, pp. 679–682. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39112-5 87

7. Bühmann, L., Usbeck, R., Ngonga Ngomo, A.-C.: ASSESS — automatic self-
assessment using linked data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS,
vol. 9367, pp. 76–89. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25010-6 5

8. Vega-Gorgojo, G.: Clover Quiz: a trivia game powered by DBpedia. Semantic-Web-
Journal.Net

9. Conejo, R., Guzmán, E., Millán, E., Trella, M., Pérez-de, J.L.: SIETTE : a web
based tool for adaptive testing. Int. J. Artif. Intell. Educ. 14(1), 1–33 (2004)

10. Conejo, R., Guzmán, E., Trella, M.: The SIETTE automatic assessment environ-
ment. Int. J. Artif. Intell. Educ. 26(1), 270–292 (2016)

11. Rios, A., Millán, E., Trella, M., Pérez-de-la Cruz, J.L., Conejo, R.: Internet based
evaluation system. In: Artificial Intelligence in Education, vol. 64 pp. 1896–1898
(1999)

12. Bongir, A., Attar, V., Janardhanan, R.: Automated quiz generator. Adv. Intell.
Syst. Comput. 683, 174–188 (2018)

http://www.siette.org
https://doi.org/10.1007/978-3-319-13704-9_5
https://doi.org/10.1007/978-3-319-06569-4_24
https://doi.org/10.1007/978-3-319-20609-7_32
https://doi.org/10.1007/978-3-319-20609-7_32
https://doi.org/10.1007/978-3-642-40814-4_36
https://doi.org/10.1007/978-3-642-39112-5_87
https://doi.org/10.1007/978-3-319-25010-6_5
https://doi.org/10.1007/978-3-319-25010-6_5

Measuring the Quality of Assessment Using Questions 69

13. Alsubait, T., Parsia, B., Sattler, U.: Generating multiple choice questions from
ontologies: how far can we go? In: Lambrix, P., et al. (eds.) EKAW 2014. LNCS
(LNAI), vol. 8982, pp. 66–79. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17966-7 7

14. Jouault, C., Seta, K.: Content-dependent question generation for history learning
in semantic open learning space. In: Trausan-Matu, S., Boyer, K.E., Crosby, M.,
Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 300–305. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07221-0 37

15. Olney, A., Graesser, A., Person, N.: Question generation from concept maps. Dia-
logue Discourse 3(2), 75–99 (2012)

16. Wainer, H., Thissen, D.: How is reliability related to the quality of test scores?
what is the effect of local dependence on reliability? Educ. Measure. Issues Pract.
15(1), 22–29 (1996)

https://doi.org/10.1007/978-3-319-17966-7_7
https://doi.org/10.1007/978-3-319-17966-7_7
https://doi.org/10.1007/978-3-319-07221-0_37

	Measuring the Quality of Assessment Using Questions Generated from the Semantic Web
	1 Introduction
	2 Question Generation in SIETTE
	3 Problems with Generated Questions
	4 Measuring the Quality of Assessment
	4.1 Preliminary Question Analysis
	4.2 Posterior Question Analysis

	5 Conclusions
	References

