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a b s t r a c t

Intelligent Tutoring Systems (ITSs) are one of a wide range of learning environments, where the main

activity is problem solving. One of the most successful approaches for implementing ITSs is Constraint-

Based Modeling (CBM). Constraint-based tutors have been successfully used as drill-and-practice envi-

ronments for learning. More recently CBM tutors have been complemented with a model derived from

the field of Psychometrics. The goal of this synergy is to provide CBM tutors with a data-driven and

sound mechanism of assessment, which mainly consists in applying the principles of Item Response The-

ory (IRT). The result of this synergy is, therefore, a formal approach that allows carrying out assessments

of performance on problem solving tasks. Several previous studies were conducted proving the validity

and utility of this combined approach with small groups of students, in short periods of time and using

systems designed specifically for assessment purposes. In this paper, the approach has been extended

and adapted to deal with a large set of students who used an ITS over a long period of time. The main

research questions addressed in this paper are: (1) Which IRT models are more suitable to be used in a

constrained-based tutor? (2) Can data collected from the ITS be used as a source for calibrating the con-

straints characteristic curves? (3) Which is the best strategy to assemble data for calibration? To answer

these questions, we have analyzed three years of data from SQL-Tutor.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

Intelligent Tutoring Systems (ITSs) are probably the most well-

nown product of the Artificial Intelligence in Education (AIED) re-

earch community. ITSs are environments that help student learn a

ubject matter. To do that, they use a knowledge base that is com-

rised of a student model and a domain model, modeling what

he student knows and what to teach, respectively. The teaching

rocess of an ITS consists of consulting the knowledge base and

dapting the content and tutorial actions according to the student

odel. This behavior tries to mimic an expert human teacher who

dapts the process to every individual student. Perhaps the most

xtended interaction pattern an ITS provides is an environment

here students can solve problems belonging to certain domain

atter. According to Jonassen [18], “most educators agree that prob-

em solving is among the most meaningful and important kinds of

earning and thinking”. A problem exists when a problem solver has

goal but does not know how to reach it. Problem solving is a
∗ Corresponding author. Tel.: +34 952137146.
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ental activity aimed at finding a solution to a certain problem

3]. The challenge of solving a problem forces students to build

odels through a process of understanding, exploring and inter-

cting with the world, developing several branches of science at

ll levels of education [30]. Thus, problem solving entails cognitive

rocessing with the goal of transforming a given situation into a

esired scenario when no obvious method of solution is available

o the problem solver [21]. According to Mayer [22] problem solv-

ng expertise can be decomposed into four components:

1 Problem translation, where the student transforms the problem

stem into an internal mental representation.

2 Problem integration, a mental model of the situation described

in the problem stem is constructed.

3 Solution planning, where the strategy to solve the problem is

determined, i.e. the steps to take in order to solve the problem.

This component requires the student to apply his/her procedu-

ral knowledge.

4 Solution execution, that is, the previous plan is applied to solve

the problem.

Constraint-Based Modeling (CBM) [39] is one of the most pop-

lar approaches for developing ITSs [8,43]. Its effectiveness as an
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Nomenclature

ITS: Intelligent Tutoring System

AIED: Artificial Intelligence in Education

CBM: Constraint-Based Modeling

IRT: Item Response Theory

ECD: Evidence Centered Design

ICC: Item Characteristic Curve

BN: Bayesian Network

CCC: Constraint Characteristic Curve

instructional methodology has been proved in a range of tutors

and studies performed over 15 years [33,35,37,38]. A characteristic

that makes it a very attractive approach is its ability to be applied

in a tutoring system easily since it does not require a complex ar-

chitecture. Furthermore, it does not require identifying all possible

steps a student could take to reach a solution to a problem. In-

stead, it only requires the identification of domain principles (rep-

resented as constraints) that no solution should violate.

Educational assessment characterizes aspects of student knowl-

edge, skill, abilities, or other attributes. For this characterization it

makes inferences from the observation of what they say, do, or

make in certain kinds of situations [5]. Furthermore, educational

assessment provides at least three different uses in instructional

improvement [3]: first, results obtained through assessment moti-

vate students and educational staff to achieve the academic goals

set by policy makers. In addition, it represents a way of helping

teachers to plan or revise their pedagogical strategies. Finally, as-

sessment can be used to help stimulate deep understanding. The

use of computers in testing is extensive nowadays. In the area of

problem solving, however, there is still an enormous range of op-

portunities to explore [3,52]. Problem solving activities require stu-

dents to apply their knowledge in constructing a solution to a cer-

tain situation [23]. One of the most recognized assessment tech-

niques is Item Response Theory (IRT), which gave rise to a set of

different models with different assumptions (see next section).

In our previous work [14,15] we made a first proposal of a

model of assessment combining CBM with IRT. This proposal can

also be seen as an implementation of the Evidence Centered De-

sign (ECD) framework [1,29,41], which focuses on providing a

generic methodology to perform assessments of problem solving.

This synergy between the AIED and psychometric mechanisms

opens the door to enhancing ITSs with new methods to perform

automatic assessment of tasks that, if carried out by a human ex-

pert, would be highly difficult and prone to subjectivity. As will

be explained later, the utilization of IRT makes it possible to apply

new formal psychometric methods in CBM that were not possible

before. In the same way, some of the fundamentals of CBM ex-

tend the typical use of IRT in testing environments, where theoret-

ical concepts are assessed, to ITS, which requires applying practical

knowledge to solve a problem.

Initially, in order to explore the validity of the approach for as-

sessment purposes, two educational systems were developed and

tested with undergraduate students of the University of Malaga

in Spain [13–15]. Although the knowledge base of these ITSs was

developed in well-defined domains, according to the classifica-

tion made by Mitrovic and Weerasinghe [36], the tasks involved

were completely different. In the first system, focused on the Sim-

plex algorithm for mathematical optimization, the number of con-

straints was small and the tasks were well-defined (i.e. those tasks

for which the process of solving them is known). On the other

hand, the second system, focused on teaching fundamentals of

Object Oriented Programming, had a relatively large number of

constraints and the tasks were ill defined with a complex solu-
ion procedure (having more than one solution or many ways to

chieve it).

Initial results obtained using CBM and IRT showed that the

ethodology was feasible and promising in these types of do-

ains. Nevertheless, the experiments were carried out in systems

onstructed for assessment purposes, with a small group of stu-

ents, using a particular IRT model and strictly following the re-

trictions imposed by the IRT to guarantee valid assessment results

nder this theory. To the contrary, the most successful CBM-based

ystems have been used mainly for learning purposes in drill-and-

ractice environments. That means that a student is allowed to

olve the same problems several times which leads to the violation

f the IRT models assumed hypotheses (i.e. student knowledge is

onstant during a session). This difference makes it necessary to

xplore the scalability and validity of the existing models based

n the combination of IRT with CBM in tutoring systems used for

earning purposes and with a large number of students.

The research carried out in this paper tries to cover the afore-

entioned problems by extending the existing methodology (ex-

lained in detail in the following sections) and performing a study

ith a larger dataset obtained over three years of use of the SQL-

utor [34]. The aims of the study are: (1) to define an appropri-

te methodology to accommodate IRT models to constraint-based

utors; (2) to determine the most appropriate IRT models in this

ase; and (3) to explore different strategies for grouping and fil-

ering existing ITS data to be used for the IRT calibration process.

he advantages of using this approach are that it provides a data-

riven technique that does not require heuristic knowledge. The

esulting ITS would be adjusted by standard statistical calibration

rocedures that are not biased with the designer subjectivity.

The paper is structured as follows: Section 2 presents the the-

retical background needed to understand both the model and the

alibration strategies presented in this paper. Section 3 describes

he related work in the field of AIED. Section 4 is devoted to

formalization of our assessment model and a generalization of

hat model to be used for ITS under the Evidence-Centered Design

ramework; it also outlines the drawbacks of the early approach.

ection 5 proposes a new methodology to overcome the limitations

f our proposal with several strategies that can be performed in

he process of calibration. Section 6 describes the experiments and

he methodological issues and Section 7 presents and discusses the

esults. Finally, conclusions are summarized in Section 8.

. Theoretical background

The approach for assessment in ITSs is based on two main pil-

ars, corresponding to the two methodologies already mentioned:

BM for modeling the ITS domain, and the IRT for assessing the

tudent’s knowledge in terms of the evidence provided by him/her

hile solving problems. Both techniques are summarized here.

oreover, the system used in this paper, i.e. SQL-Tutor, is also de-

cribed briefly.

.1. Constraint-Based Modeling

The first element of the methodology is the CBM paradigm for

uilding ITSs, which will be the instrument through which stu-

ents’ evidence is gathered. CBM is based on Ohlsson’s theory of

earning from performance errors [39,40], according to which in-

omplete or incorrect student’s knowledge can be used within an

TS to provide guidance. This faulty knowledge is detected using

onstraints, which are the key element of CBM. Constraints are

rinciples that must be followed by all correct solutions in the

iven instructional domain. If the student’s solution violates any

onstraints, it is incorrect and the system provides the student

ith the appropriate feedback for remediation. Each constraint
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Fig. 1. The SQL-Tutor interface.
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onsists therefore of an ordered pair (Cr, Cs), where Cr is the rele-

ance condition and Cs is the satisfaction condition [33]:

If < relevance condition Cr > is true,

then < satisfaction condition Cs > had better also be true.

The application of CBM is very simple, since only an infer-

nce engine and the appropriate representation of the solution are

equired [31]. Accordingly, once the student has finished solving

problem (or it can also be done before by student demand),

onstraints are checked against the student’s solution using sim-

le pattern matching. Constraints are only applied to solutions for

hich they are relevant (as determined by the relevance condition

f each constraint). The satisfaction condition of a relevant con-

traint specifies properties that the solution must fulfill to be cor-

ect. The set of constraints and problems that can be presented

o students form the domain model of a particular tutor. The per-

ormance of a student with respect to the constraints, i.e., the list

f violated and satisfied constraints in each solution take part of

is/her student model.

.2. SQL-Tutor

In this paper, we have used data from one of the most popular

nd successful constraint-based tutors, SQL-Tutor [34]. Although its

ain source of users comes from the students enrolled in database

ourses at the University of Canterbury in New Zealand, it is avail-

ble worldwide via the DatabasePlace portal established by Addi-

on Wesley,1 which uses SQL-Tutor and two other tutors developed

n the databases domain [32].

SQL-Tutor teaches SQL queries, which is the dominant relational

atabase query language. It is designed to help undergraduate stu-

ents with their difficulties mastering the subject. Although SQL is

simple and well-structured language, students find it difficult to

earn due to the advanced concepts and cognitive overload [45] as-

ociated with this type of problem, which is a result of having to

eep in mind many details involved in the problem that is being

olved.

The interface of SQL-Tutor reduces the working memory load

y displaying the database schema and other information related

o the problem (see Fig.1). Without this information, the student

ould have to keep in mind the structure of the database or han-

le it by other means. Besides, the system presents the parts of
1 http://www.aw.com/databaseplacedemo/sqltutor.html. i
he solution, simplifying the problem in different subgoals, each

ne associated with the building of a particular component.

The correctness of a student’s solution can be verified by

ubmitting it to the system. Incomplete solutions can be sub-

itted too. The system compares the student’s solution to the

onstraints. SQL-Tutor’s domain model is comprised of a huge

et of constraints, with more than 700 defined so far. This

an give the reader an idea about the difference in magnitude

etween the data that can be obtained with this system, with

espect to the systems used in existing studies, where the most

omplex domain was comprised of 87 constraints and the simplest

ad 18. Examples of constraints are shown in Fig. 2.

The violations and satisfactions of the constraints are used to

nform the students about their mistakes. The system provides

eedback in increasing levels of detail, starting from one that gives

ittle information to one that gives the complete solution [20]. The

istory of use of each constraint is stored in the student model,

howing for each attempt whether the constraint was used cor-

ectly or whether it was violated.

Simultaneously with the process described above, the system

ecords all relevant activities of each student in a log file. This in-

ludes all the results that affect the student model and the scaf-

olding information. This log file containing qualitative information

bout the students has been the source of evidence used in the

esearch presented in this paper.

.3. The Item Response Theory

The second pillar of our assessment model a well-founded tech-

ique specifically developed for assessment, i.e. the IRT [49]. This

heory assumes that a latent trait (i.e. the student knowledge level)

an be inferred from the student’s answers to independent ques-

ions or items, which provides evidence based on conditional prob-

bilities named the Item Characteristic Curve (ICC) [17]. Its main

dvantage in comparison with other assessment techniques is the

nvariance of measurement. This means that the assessment score

s independent of the instrument of measure being used and, thus,

he same score would be obtained in any test taken [16].

The ICC, which is probably the most important concept in the

RT, models the probability of answering a question correctly given

he student knowledge. Fig. 3 illustrates the shape of the ICC. As

an be seen, the greater the knowledge value (x axis), the higher

he probability of giving a correct response (y axis). There are dif-

erent IRT models based on different ICC functions. This figure con-

ains what is probably the most popular function that implements

he ICC, i.e. the 3 Parameters Logistic (3PL), which is also depicted

n the equation below:

(ui = 1|θ ) = ci + (1 − ci)
1

1 + e−1.7ai(θ−bi)
(1)

Here, P(ui = 1|θ ) represents the probability of correctly answer-

ng the item i, given a student’s knowledge level θ within the in-

erval (−∞,…,+∞). The correctness of the question is represented

ith ui = 1, otherwise 0 would be used to reflect a wrong state.

he other elements in the equation are the three parameters char-

cteristic of the 3PL function:

• ai is called discrimination factor and is a value proportional to

the slope of the curve. The greater this value, the higher the

distinction between different student’s knowledge levels.
• bi, also called difficulty, is the value of θ for which the proba-

bility of answering correctly is the same as answering wrongly.
• The last parameter, ci, is the guessing factor and represents

the probability of a student without knowledge answering

correctly.

Only those models whose items can be assessed as correct or

ncorrect, i.e. the dichotomous models, are considered here, such

http://www.aw.com/databaseplacedemo/sqltutor.html
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Fig. 2. Examples of constraints in SQL-Tutor.

Fig. 3. The shape of an ICC under the 3PL model.
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as the Two Parameters Logistic (2PL) or the One Parameter Lo-

gistic (1PL). Both of them are simplifications of the 3PL function:

the 2PL is equivalent to the 3PL but the guessing parameter would

be 0, and the 1PL is equivalent to the 2PL but fixing the discrim-

ination parameter to a given value, i.e. ai =1. However, there are

other approaches, e.g., the polytomous models, where more than

two answers are allowed and therefore partial credit to items can

be given [17]. This initial decision is congruent because constraints

are dichotomous.

Using the ICCs, and assuming (1) item independence; and (2)

constant knowledge throughout the session, the knowledge of the

jth student θ j can be computed as shown is equation:

P
(
θ j

)
=

n∏
i=1

P
(
ui = 1|θ j

)ui j
[
1 − P

(
ui = 1|θ j

)]1−ui j
(2)

where P(θ j) is the jth student knowledge distribution; n is the

number of items administered to the student; ui j = 1 indicates that

the jth student’s answer to item i was correct, otherwise ui j = 0.

The likelihood function of a given set of response patterns is

therefore:

L
(
u|ai, bi, ci, θ j

)
=

N∏
j=1

n∏
i=1

P
(
ui=1|θ j

)ui j
[
1−P

(
ui=1|θ j

)]1−ui j
(3)

where N is the total number of students.
There are different techniques for estimating the model param-

ters ai, bi, ci and the students’ knowledge θ j that maximizes this

unction. One of them is the Marginal Maximum likelihood (MML).

his process is known as calibration and is carried out with the

elp of the computer program Multilog [48].

In order to compare the goodness of fit of two different models,

ith a different number of parameters, the ratio of the likelihood

unction can be used. The test statistic is twice the difference in

hese log-likelihoods:

= −2ln

(
L1

L2

)
= − 2ln(L1) + 2ln(L2) ≈ χ2(g) (4)

here g is the degree of freedom, which is computed as the dif-

erence in the number of parameters of the two models. Mul-

ilog output includes the negative-twice-log-likelihood value for

ach model calibration. A model with more parameters will al-

ays fit at least as well (have an equal or lower negative-twice-

og-likelihood). Whether it fits significantly better and should thus

e preferred is determined by deriving the probability or p-Value

f the difference D.

. Related work

There are three outstanding approaches for developing ITSs:

ognitive tutors, Bayesian Networks (BNs) and CBM. Cognitive

utors are learning environments based on the ACT-R theory of

ognition [2]. That theory makes a distinction between declarative

nd procedural knowledge. The first one involves factual knowl-

dge, whereas the second is based on production rules which

nable students to solve problems. Cognitive tutors include their

wn mechanism to estimate the student’s knowledge during the

earning process, i.e. Bayesian Knowledge Tracing [10]. It models

he knowledge through hidden Markov models where binary val-

es are assumed and give as a result short-term student models,

.e. models oriented to adapt the instructional process according

o the estimations obtained during that process.

BNs are probably the most widespread approaches that have

een used for modeling student knowledge while solving a com-

lex task [12,42]. They are graphical modeling tools that have

een successfully applied in different application contexts [26].

hese networks model the probability of a student mastering

specific knowledge component in terms of the sequence of

esponses given to previous elements of a task [12]. BNs have

een applied in intelligent tutoring systems to represent student

nowledge, e.g. [7,9,25,44,46,50,51]. BNs can also be combined

ith other techniques such as machine learning [4]. When used
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Fig. 4. Conceptual assessment framework.
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or assessment purposes, nodes of a BN can represent different

omponents of an individual such as knowledge, misconceptions,

motions, learning styles, motivation, goals, etc. [8]. However, the

ain drawbacks of BNs is the way of constructing the networks

hat could affect to the results obtained, and the calibration of the

onditional probabilities, which is a complex process.

In the existing literature we have not found any other formal

ethodology applied in CBM to assess students. Although in [24]

Ns were used to model the student by estimating the probabil-

ty of mastering a constraint, the estimates were not used as a

edium to get the students’ level, but to provide them with the

ost appropriate instructional action. Even looking more generally

n the field, at the level of assessment in ITSs, we were unable to

nd a well-founded approach that, using student’s interaction with

he system, automatically generates well-founded assessments.

More recently, Davier and Halpin [12] proposed a framework for

he assessment of cognitive skills in problem-solving tasks solved

ollaboratively. They also proposed several statistical approaches

o model the data collected from collaborative interactions, where

hey tried to measure separately the contribution of each student

o the final solution of the problem.

. An assessment model for problem solving environments

Even though testing is the most common approach for assess-

ent in computer-based systems, there are some domains (es-

ecially those involving procedural tasks) where this evaluation

echanism does not seem to be the most suitable. Several au-

hors such as [6] have pointed out that in any learning system

esigned to emulate professional practice the assessment should

e performance based. Our proposal here is directly aligned with

hat claim: students’ knowledge acquired in problem solving envi-

onments should be measured in the same way, i.e. using a few

roblems instead of forcing the students to take a test composed

f a large number of questions about the knowledge required to

olve those problems.

The goal of our assessment model is to provide a framework

or building assessment systems based on constraint-based tutors

owered by IRT models. Consequently, this proposal is the result of
ombining two different lines of research, i.e. CBM and IRT-based

ssessment, into a single environment able to be used both for

ssessment and for learning purposes. As a result of this combi-

ation, a constraint-based tutor would be also able to perform a

ormal and quantitative estimation of the student knowledge.

Our proposal can be framed under the Evidence-Centered Design

ECD) methodology, which is a guideline for designing, produc-

ng and delivering educational assessments [28,29]. It incorporates

epresentations of what a student knows and does not know, in

erms of the results of his/her interaction performance (evidence)

ith assessment tasks. According to Behrens et al. [5], “ECD frame-

ork provides terminology and representations for layers at which

undamental entities, relationships, and activities continually appear

n assessments of all kinds”. Knowledge representations, workflows,

nd communications are organized in terms of layers [27]. Five

ayers can be identified in ECD which are summarized below to-

ether with the way in which they have been particularized for our

roposal:

� Domain analysis, where relevant information about domains is

gathered, i.e., concepts, terminology, tools, knowledge represen-

tations, etc. In our case it consists of identifying the concepts,

skill, etc. involved in each problem and the constraints that

characterize the domain.

� Domain modeling, where the results of the previous layer are

represented in a model, in terms of assessment argument. For

our proposal, knowledge, skills and abilities are identified. They

will be measured in the student model. Additionally, observable

knowledge evidences are collected and, thus, the set of con-

straints identified during the analysis will be included in the

problems which will take part of the task model.

� Conceptual assessment framework: Structures of the assessment

model are designed (see Fig. 4). Here student observable

knowledge evidences (on left-hand side of the figure) are

related to non-observable features such as the student knowl-

edge (right-hand side of the figure). The Student model will

consist of probability distributions containing estimations of

the student knowledge, skills and abilities identified in the

domain modeling stage. In Fig. 4 these estimations are repre-
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sented as θ1, θ2,…, θn. These unobservable variables are linked

to the observable evidences through an evidence model, able

to transform those knowledge evidences into updates of the

student model. These observable evidences are provided by the

task model, which comprises the set of exercises or problems

the student has to solve (on the left-hand side of Fig. 4). More

concretely, in our proposal the task model consists of the set

of problems provided by a CBM tutor such as SQL-Tutor. The

evidence model uses the evidence provided by the CBM-based

problems and an IRT model is applied to them. Inside the

evidence model, two submodels can be found: the evaluation

submodel identifies the observable elements in the task model,

which will be used to perform the assessment. The statistical

submodel is responsible for the transformation of the observ-

able evidence into updates of the student model. The next

section will describe this evidence model in detail.

� Assessment implementation: The model generated as a result of

the previous layers is implemented and calibrated. As men-

tioned, calibration is a previous stage that needs to be done

before the assessment.

� Assessment delivery: Finally, the result of all previous layers is

compiled and used in an empirical environment to assess the

performance of students.

4.1. The evidence model

Test items in assessment are usually scored dichotomously, i.e.

either as correct or incorrect. However, problems in constraint-

based tutors, from a psychometric perspective, can be seen as

what is called constructed-response questions [19]. The performance

of students on such problems is difficult to evaluate, as they re-

quire different types of knowledge, skills, or abilities to be applied

(e.g. the design of a laboratory experiment, solving a mathematical

problem, writing a schema summarizing a text, etc.). Assessment

of complex tasks requires more sophisticated mechanisms taking

into account all the knowledge needed to find the solution. The fi-

nal solution in these kinds of tasks is not thus a good indicator of

the students’ knowledge level in the subject matter. When a hu-

man tutor evaluates the student’s performance on a complex task,

he/she not only checks whether or not the solution is correct, but

also explores how the students accomplished the process of solv-

ing the tasks. That is, for the evaluation of that task, several ev-

idences are taken into account in order to compute the score in

it.

In order to overcome the limitations that constructed-response

questions usually have when they are treated like multiple-choice

questions from the assessment point of view, in our proposal those

complex tasks are considered a source of multiple student knowl-

edge (or un-knowledge) evidence. In constraint-based tutors each

problem is linked with a set of constraints representing domain

principles. As a result, students, while solving a problem, are gen-

erating evidence through the constraints they violate or satisfy.

We use such evidence to compute the student knowledge apply-

ing an IRT-based assessment model. The set of constraints con-

stitutes the evaluation submodel. Accordingly, in our evaluation

model constraints are treated as IRT-based items. Constraints and

items have the same nature since they provide evidence on the

student’s declarative knowledge: in IRT, a test item provides evi-

dence about a domain concept being assessed. In the same way,

a constraint provides evidence about a domain principle while

the student is solving a problem. Both constraints and items take

two values that represent the student’s performance, which can

be used as a source of evidence to estimate the knowledge level.

When a student is solving a problem, there will be a set of relevant

constraints, that is, those constraints that could be violated in the

problem. As a result, once the student has solved a problem, we
an get the set of constraints (which are relevant for that problem)

hat were (or not) violated.

In the statistical submodel each constraint cj will have its own

haracteristic curve, P(cj|θ ), representing the probability of violat-

ng it given the student knowledge level θ . Those characteristic

urves are called Constraint Characteristic Curves (CCCs) in analogy

o the IRT ICCs, and through them the kth student knowledge level

(θ k|φ, τ ) can be computed as can be seen with the equation:

(θk|φ, τ ) =
m∏

i=1

n∏
j=1

[
P
(
c j|θk

) fi j
(
1 − P

(
c j|θk

))1− fi j

]ri j

(5)

In Eq. (5), φ = p1, p2, . . . , pm represents the set of m prob-

ems solved by the kth student and τ = c1, c2, . . . , cn, the set of

ll domain constraints. Note that the same constraint can appear in

ifferent problems. Accordingly, rij indicates whether or not the jth

onstraint is relevant in the ith problem. Moreover, fij =1 indicates

hat the constraint cj was violated in the problem pi. Otherwise, fij

s zero. The student knowledge is expressed as a probability distri-

ution computed as a product of CCCs or their inverse depending

n whether or not the constraint was violated.

. Constraint characteristic curves calibration

Characteristic curves need to be calibrated before being used for

ssessment purposes. As a result of that process, the parameters

f the characteristic curves are calculated. In testing environments,

he original calibration process is done using student performance

esults. More concretely, the value of correction or mistake for ev-

ry question and for each student from a sample is needed. The

ata needed can be represented with a matrix reflecting the per-

ormance of the student, henceforth called the Performance Matrix.

ach row of this matrix is the data of a single student and each

olumn is the result of a student for all the questions. For example,

he element eij of the matrix would be the result for the student j

n the question i. The elements can take three values: 1 to repre-

ent positive result (answered correctly); 0 to indicate a negative

esult (an incorrect answer); and another fixed value to indicate

hat the question has not been presented to the student.

The process of calibrating can be done using the performance

atrix as input for IRT software such as, for instance, Multilog

48]. Nevertheless, in the case of the CBM approach, setting up the

alues of the elements in the matrix needs to take into account

ome principles in order to produce a valid model. These key prin-

iples arise from the IRT assumptions that must be satisfied in or-

er to produce a valid model and estimates:

1) Local independence of the items being calibrated, meaning that

one item should not provide any information a student could

use to correctly answer another item.

2) Constant knowledge, which establishes that during the test, the

measured latent trait does not change. This hypothesis implies

that the knowledge should be the same for the entire assess-

ment session, i.e. no learning could occur meanwhile.

The previous procedure of estimating characteristic curves can

e applied to calibrate CCCs. In this case, however, the input of

his calibration process is the performance of a student population

ho previously solved the set of problems. The performance ma-

rix is composed, therefore, of a row for each student and a col-

mn for each constraint. The three possible values would have the

ame meaning: 1 for a positive result (satisfying the constraint), 0

or a negative result (violating the constraint), and another fixed

alue for a constraint that has not been relevant to the student’s

olution. The calibration outcome is the set of CCCs. As mentioned,

ach one of these curves models the probability of violating a con-

traint given a certain level of knowledge. The shape of a typi-

al CCC is the exact opposite of an ICC (see Fig. 3). Therefore, it
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ould be a monotonically decreasing function since the higher the

nowledge, the lower the probability of violating the constraint.

Regarding the IRT assumptions that have to be fulfilled before

erforming the calibration, the first one, i.e. the local indepen-

ence, is satisfied by the CBM itself since the constraints must be

asic and exclusive principles. Nevertheless, the second assump-

ion could be conflicting within ITSs since these types of systems

re made for learning purposes and, in that case, the student’s

nowledge usually changes. In the rest of this section, we will ex-

lore three different strategies (i.e. the “constant knowledge ses-

ions”, the “first time relevant”, and the “problem grouping”) to ap-

roach calibration when available student data do not fulfill the re-

uirement of constant student knowledge. Finally, an example will

e shown to contribute to a better understanding of those three

riteria.

.1. The “Constant Knowledge session” approach

In our previous work [14,15] good results were achieved by ap-

lying IRT to CBM in problem solving assessment environments.

owever, here, we want to go further and design a procedure for

alibrating the CCCs for constraint-based tutors. The challenge is

herefore to be able to calibrate the CCCs for systems aimed not

nly at assessment, but also at learning.

To tackle the above-mentioned issue, we designed a new strat-

gy to build the performance matrix by redefining the concepts

f “session” and “student”. Normally, a session takes place when

he student logs into the ITS, carries out some or activities and

hen logs out. If the student’s activities in consecutive sessions are

rouped considering those sessions close enough in time, we could

ave windows of activity where the knowledge between sessions

ould be assumed to be constant or not significantly different. This

oncept is what we call a Constant Knowledge session (CK-session).

he time separating any two consecutive sessions in a CK-session

hould not be higher than a certain threshold. It can be stated for-

ally in the following way: Let ami be the moment the last stu-

ent action happened in the ith session (Si); a0(i+1) the moment

he first action occurred in the (i + 1)th session (Si+1); and TCK a

xed threshold that represents a period of time where it can be as-

umed that the knowledge has not changed. If (a0(i+1) − ami) < TCK

hen, Si and S(i+1) will belong to the same CK-session.

All CK-sessions of a student must be taken into account in the

CC calibration, since these sessions provide information about dif-

erent sets of constraints. However, each CK-session represents a

ifferent knowledge state of the student, as stated before, and con-

idering the whole set of evidence for a student would thus violate

he IRT assumptions. This problem can be tackled by splitting each

ifferent CK-session of a student into separate sessions of different

irtual students. In this way, the set of a student’s CK-sessions could

e turned into a larger set of virtual students, each one having a

ifferent knowledge state. It is important to note that this strategy

voids inter-session learning, but it is still necessary to bear in mind

he intra-session learning. The intra-session learning can be avoided

y using the students’ evidence of a constraint only the first time

t was relevant and avoiding the learning provided by feedback in-

ide the CK-session.

.2. The “first time relevant” approach

The problem of constant knowledge can be dealt by selecting in

he calibration only those values representing the students’ perfor-

ance that did not result in learning gain. Identifying such values

s relatively easy in those cases it was used evidence from CBM tu-

ors that were designed for assessment purposes. That “first time

elevant” approach takes as evidence only the student performance
he first time the constraint is relevant for the student. This crite-

ion is equivalent to setting the TCK to be greater than the whole

eriod where the evidence is being taken. Therefore, we only used

he result of a constraint the first time it could be (or not) violated,

ince the principle it models makes sense in the current problem

tate. For instance, in the domain of fraction addition, constraints

n computing the least common multiple make sense only when

he student is calculating it.

By considering the first time a constraint is relevant, we are

nly taking into account the student’s prior knowledge state, i.e.

he knowledge before learning. Otherwise, if we would also con-

ider what happened the nth time (where n > 1) a constraint was

elevant, we would not be taking into account the fact that a pre-

ious violation of the constraint could have resulted in feedback

hich could modify the student’s knowledge state associated with

hat constraint. In this way, the performance matrix used for cal-

bration in the existing experiments was formed by filtering the

alues for repeated constraints.

Let us take for example SQL-Tutor. In this CBM system, there

s neither any restriction about the number of attempts per prob-

em, nor any imposition on the sequence of problems to be solved.

herefore, the students can have many sessions with the tutor,

henever they want, and solve as many problems per session as

hey like. This means that a constraint can be relevant at differ-

nt times for each student and multiple times, each one reflecting

ifferent knowledge stages. Using this calibration approach of the

rst time relevant in systems where students have large sessions,

iscards data associated with constraints that are not relevant

or the first time but, however, could be associated with new states

f the student’s knowledge. Missing these data involves redesign-

ng the existing strategy to take into account the student knowl-

dge evolution that occurs over long periods of usage and, in gen-

ral, in any tutoring system. This problem can be solved by com-

ining this approach with the CK-session approach.

.3. The “problem grouping” approach

The “problems grouping” criterion consists in grouping the ev-

dences by problems, which means that consecutive attempts of a

tudent to solve a problem are considered to be in the same CK-

ession and, thus, conforming to a virtual student. Although this

riterion has a variable value of TCK, because between two differ-

nt problems done by a student there is no fixed amount of time,

e thought it would be interesting to make this distinction to as-

ume knowledge changes only between problems.

.4. Data filtering

Given that constraints are relevant for specific problems, the

mount of evidence obtained for these constraints will depend on

ow often the problems are attempted by students. In domains

ith large constraint sets, such as SQL-Tutor, a high level of inter-

ction between the students and the system is required in order

o have a homogeneous amount of evidence per constraint. For

his reason, some of the constraints will have a smaller amount

f evidence than others, and, therefore, will produce less accurate

alibration. Taking this into account, we have considered three fil-

ering scenarios:

� Scenario 1: Full data set. This is the basic scenario where con-

straints that were not relevant during a given year, that is, those

that were not included in any of the problems of that year,

were discarded for the calibration process in that year.

� Scenario 2: Discarding constraints which are only rarely rele-

vant. Constraints that were relevant for less than 10% of times

they could have been relevant were discarded.
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Fig. 5. A graphical representation of two students’ performances in an ITS.
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� Scenario 3: Discarding constraints with low variability (almost

always violated or always not violated). We also considered

that it would be interesting to explore the effect of discarding

not only constraints with a small amount of evidence, but also

those that were usually violated or usually not violated by stu-

dents when they were relevant to a problem. In this scenario

we discarded the constraints that were violated less than 5% of

the time, and those that were violated more than 95% of the

time.

5.5. An example of use

To provide a better understanding of the proposed criteria, in

Fig. 5 we introduce an example with a small set of eight con-

straints and two students. This figure shows a series of attempts,

each represented by a rectangle labeled Aij, meaning the attempted

number j for problem i. Each attempt has a list of relevant con-

straints, which can be different for two attempts on the same

problem, since the student could have added new elements in the

submitted solution.

In this example, student 1 has made three attempts at prob-

lem 4; then, two attempts at problem 2; next, two attempts

at problem 1; and again two more attempts at problem 4. The

horizontal space between each pair of attempts represents the

time elapsed between them. In this case, three significant spaces

between the four problems solved by student 1 can be observed:

t1, t2 and t3. The performance matrices resulting from applying

the different calibration approaches are represented in Fig. 6. The

matrix corresponding to the CK-session approach is created by

grouping the attempts which are not separated by more than a

threshold TCK. In the example presented in Fig. 5, for student 1,

we can see that only t2 is higher than the threshold value and,

therefore, two CK-sessions can be considered (CKS and CKS ),
1 2
ach one representing a single session of two virtual students

VS1 and VS2). However, for student 2, both t1 and t3 are higher

han the threshold and, as a result three virtual students are

enerated (VS3, VS4 and VS5). Finally, in the figure we have

ircled those constraints that are relevant for the first time in

CK-session.

Note that it is possible for the time between two consecutive

ttempts aij and ai(j + 1) to be greater than the time between two

ttempts in different (but consecutive) problems aij and ahk (i.e.,

roblem h attempted immediately after problem i). In that case,

nless the student had closed the session for some reason, they

re considered as still belonging to the same CK-session as, during

his time, the student is supposed to be working with the system

n a given attempt. For this reason, in the process of identifying

K-sessions from the data only pauses between different problems

re considered.

Performance matrices corresponding to Fig. 5 according to the

hree criteria are given in Fig. 6. There, each column is associated

ith a constraint Ci and each row to a virtual student. Element eij

n each matrix has an element Aap, which represents that the per-

ormance result of constraint j for the virtual student i was taken

rom the attempt number a in the problem p. This result will be

binary value, 1 or 0, to represent the satisfaction or violation, or

he character x when the constraint has not been relevant during

he session.

Finally, the calibration is performed by applying some IRT

ethod to the matrix obtained from any of the three approaches.

he result will be the CCCs of all the constraints (more concretely,

he parameters of the probabilistic function selected for model-

ng those curves), as well as the student knowledge estimation of

hose individuals whose data were used in the calibration process.

n the study described in the next section, we have used Multilog

oftware to infer the parameters associated with the logistic func-

ions modeling the characteristic curves.
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Fig. 6. Performance matrix for Fig. 5 according to the different criteria.
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. Method

.1. Objectives

The aim of this study is to determine which IRT model better

ts in the ITS case and the best criterion to construct the per-

ormance matrix. We explore different aspects of the calibration

rocess with the input data from learning environments. The chal-

enge is to analyze the best strategy to optimize the calibration re-

ults according to the aspect studied. More concretely, we analyze

ifferent aspects of calibration, trying to answer the following four

uestions:

1 Which IRT model best fits the datasets? In this sense, we analyze

the most extended models for modeling characteristic curves,

i.e. 1PL, 2PL and 3PL in order to see which one best fits data

for our ITS.

2 Which is the best strategy to filter raw data for the performance

matrix and reduce noise? In the next section we introduce three

filtering criteria for this purpose. We explore which one leads

to the best calibration of performance results.

3 Which is the best strategy for grouping data? We also explore

several strategies for grouping data from different students’

samples. In learning environments data collection is usually

performed incrementally and this fact needs to be taken into

account to guarantee that calibration is accomplished suitably.

4 When using the CK-session approach, how should be the TCK

threshold value? As explained CK-session criterion can be con-

figured in terms of the threshold considered. In this section we

study how the selection of the T value influences the calibra-
CK
tion performance. That is, our study is focused on analyzing the

value for which the TCK can produce a more accurate calibration

of constraints.

.2. Participants

The data considered in this study were obtained from a total

f 197 students that used SQL-Tutor as a ITS at the University of

anterbury, New Zealand: 39 students in 2008, 98 in 2009, and 60

n 2010. A first filtering process removed data about 15 students

rom 2009 and 6 students from 2010 due to their low activity in

he system.

Students worked with SQL-Tutor over the course and solved as

any problems as they wanted. That generates a huge amount of

ata in terms of constraints. Different problems were included in

ach instance of the course, and the set of constraints was mod-

fied from 2008 to 2009. Some constraints were the same, some

ere removed and new ones were added. In this situation, we de-

ided to calibrate the models independently for each year. This de-

ision also allows an analysis of the consistency of the comparison

esults, which should not differ from one year to the next.

.3. Procedure

We have assembled the data of each year according to the three

ltering scenarios, resulting in 9 initial datasets. Each dataset was

xtracted from two output files generated by SQL-Tutor with in-

ormation about the student model. One of those files contained:

1) the list of the problem identifiers solved by the student; (2)

or each constraint, the number of times it was relevant; (3) the
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Table 1

Number of constraints involved in each scenario.

Filtering scenario 2008 2009 2010

S1 493 502 480

S2 429 386 357

S3 300 478 346

Table 2a

Average negative-twice-the-loglikelihood values by IRT model and year.

IRT model 2008 2009 2010 Average

1PL 4019.04 7852.47 3541.52 5137.68

2PL 3472.58 7094.42 3214.04 4593.68

3PL 3484.96 6993.40 3254.08 4577.48

Average 3658.86 7313.43 3336.55 4769.61

Table 2b

Average negative-twice-the-loglikelihood values by IRT model and filtering scenario.

IRT model S1 S2 S3 Average

1PL 6144.41 6050.18 3218.44 5137.68

2PL 5520.28 5419.03 2841.73 4593.68

3PL 5510.31 5397.14 2824.99 4577.48

Average 5725.00 5622.11 2961.72 4769.61

Table 2c

Average negative-twice-the-loglikelihood values by IRT model and grouping strat-

egy.

IRT

model

CK

(10 min)

CK

(5 min)

CK

(3 min)

CK

(1 min)

1st-

time Problem Average

1PL 6390.08 6540.91 6693.37 6873.27 3340.36 988.09 5137.68

2PL 6073.51 6177.12 6305.77 6424.66 3279.29 −698.26 4593.68

3PL 6096.12 6210.83 6344.43 6447.49 3243,87 −877.88 4577.48

Average 6186.57 6309.62 6447.86 6581.80 3287,84 −196.01 4769.61
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list of trials, i.e. the problems in which the constraint was pre-

sented; and (4) whether it was violated or not. The other file was

a log file that included the problem selected by the student and

the date when it was chosen. Also included was the set of con-

straints that were relevant each time the solution was corrected,

the date when it happened and whether or not they were vio-

lated. We developed a procedure for combining these two files

and generating a dataset containing the set of problem identifiers

solved by the student, their relevant constraints, their violations,

and their timestamps. The 9 datasets produced 54 different per-

formance matrices applying the 6 different grouping criteria ex-

plained in the previous section (4 CK-session criteria with differ-

ent thresholds, 1st-time-relevant, and problem grouping). Finally,

the CCCs calibration was carried out for each of the three differ-

ent IRT models, i.e., 1PL, 2PL and 3PL. Finally, the computation was

performed using Multilog [47]. The whole process of filtering the

initial dataset, generating the performance matrices and calibrating

them with Multilog, could not be done manually due to the dimen-

sion of the data. They were carried out using an auxiliary Java ap-

plication that performed each step and applied the different factor

combinations.

As a result, we obtained a total of 3×3×6×3=162 sets of

calibrated CCCs. In order to evaluate the quality of every result-

ing characteristic curve dataset, we took the negative-twice-the-

loglikelihood. This value is twice the log of likelihood function;

the lower its value, the better the fit of the dataset [17]. The

negative-twice-the-loglikelihood is commonly used as a measure

of the goodness of fit for the parameters representing every char-

acteristic curve [11]. It is one of the output values produced by

Multilog.

With respect to the CK-session criterion, the data from stu-

dents who made at least one attempt were used to calibrate the

constraints using different values of the threshold, TCK, to gener-

ate the virtual students. Precisely, TCK was determined to be 10,

5, 3 and 1 min. The main reason to choose these low values was

that learning takes place when the student is solving a problem,

and therefore, knowledge does not remain constant for long. It

should be noted that the higher the TCK, the lower the number

of CK-sessions, and thus, the amount of data for calibration is re-

duced. On the other hand, if we consider a low TCK, the CK-sessions

could be too short, that is, containing only a few constraints and,

thus, reducing calibration quality. For this reason, experiments con-

ducted serve to determine the most appropriate value of TCK.

7. Results

7.1. IRT models

In order to determine the model that best fits the data, we

have compared the value obtained for the negative-twice-the-

loglikelihood in the 162 calibrations. Table 1 shows the number of

constraints involved in each filtering scenario for each year.

To compare two values of the negative-twice-the-loglikelihood,

we have to find out the degrees of freedom of the χ2 distribu-

tion, which depends on the number of parameters involved in

each model (see Section 2.3.). For instance, between 1PL and 2PL,

for a given year, the difference is exactly the same as the num-
er of constraints, because each 2PL curve has and additional pa-

ameter. The number of constrains varies from one year to an-

ther and depends on the filtering scenario, (see Table 1), so for

xample, for the year 2008, and scenario 3, we should consider
2 with 300 degrees of freedom (χ2(300) = 325.40 for p=0.05)

nd compare the negative-twice-the-loglikelihood value obtained

n the calibration of the 1PL model for that year using a given

rouping strategy with the equivalent data obtained from calibra-

ion of 2PL model. On the other extreme, considering filtering sce-

ario 1 in the year 2009, will lead to 502 degrees of freedom,

hich means (χ2(500) = 553.13 for p=0.05). As an approximation

e can say that in the average case a difference in the negative-

wice-the-loglikelihood values greater than 400 will indicate a sta-

istically significant difference (p < 0.05).

Tables 2a–2c show these values across different combination of

he other conditions. Each value in Tables 2a and 2b is the average

f the value obtained in 18 calibrations. Each value in Table 2c is

he average of 9 calibrations.

According to this reasoning, we can conclude that 1PL produced

calibration with significantly lower quality than the other two

egardless of the other conditions. Nevertheless, we could not find

ny significant difference between the 2PL and 3PL models. More-

ver, following a random pattern, sometimes 3PL was better and,

t other times, 2PL was better. This suggests that for calibration of

onstraints, a 3PL model or 2PL perform similarly, but 1PL is not

uitable. This is not a surprise, since the difference between 2PL

nd 3PL is just the guessing factor. Guessing factor applies when

he student can solve an item just by random selection, such as a

ultiple choice item, but it makes no sense talking about guessing

or a constraint, since possible outcomes (satisfaction or violation)

annot be randomly selected. As a result, the 2PL model is chosen.

.2. Filtering scenarios

Tables 3a and 3b contain the average of the negative-twice-the-

oglikelihood values by year and grouping method respectively. In

his case only data from 2PL RT model have been used, because

hese have been found to be the most accurate in the previous
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Table 3a

Average negative-twice-the-loglikelihood values by filtering scenario and year.

Scenario 2008 2009 2010 Average

S1 5078.47 7850.67 3631.72 5520.28

S2 5032.78 7725.33 3498.97 5419.03

S3 306.48 5707.27 2511.45 2841.73

Average 3472.58 7094.42 3214.04 4593.68

Table 3b

Average negative-twice-the-loglikelihood values by filtering scenario and grouping

strategy.

Scenario CK (10 min) CK (5 min) CK (3 min) CK (1 min) 1st-time Problem Average

S1 6668.93 6844.77 7010.47 7288.60 3420.03 1888.90 5520.28

S2 6582.07 6713.60 6884.90 7160.73 3420.33 1752.53 5419.03

S3 4969.53 4973.00 5021.93 4824.63 2997.50 −5736.20 2841.73

Average 6073.51 6177.12 6305.77 6424.66 3279.29 −698.26 4593.68

Table 4

Number of virtual students involved in each grouping strategy.

Grouping strategy 2008 2009 2010

CK (10 min) 167 293 171

CK (5 min) 190 308 175

CK (3 min) 215 323 178

CK (1 min) 338 370 192

1st time 39 83 54

Problem 1542 1976 938
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Table 5

Average negative-twice-the-loglikelihood values by grouping strategy and year.

Grouping strategy 2008 2009 2010 Average

CK (10 min) 3278.80 8168.30 3461.50 4969.53

CK (5 min) 3217.80 8242.00 3459.20 4973.00

CK (3 min) 3224.00 8335.50 3506.30 5021.93

CK (1 min) 2452.10 8394.40 3627.40 4824.63

1st time 1997.60 4591.40 2403.50 2997.50

Problem −12331.40 −3488.00 −1389.20 −5736.20

Average 306.48 5707.27 2511.45 2841.73
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ubsection. Each value in these tables is the average of 6 and 3

alues respectively.

Comparing the different scenarios, the latter gives a better

esult, which suggests that filtering some constraints that are

elevant very often is also a good criterion. This issue is especially

pparent in the 2008 dataset, where some of the constraints

ere always relevant, which made them unsuitable for calibration

some positive or negative evidence should occur to produce

suitable calibration result). The filtering of those constraints

rastically improved the quality of the calibration.

Note that to compare two filtering scenarios the degrees

f freedom of the χ2 distribution should be determined de-

ending on the model, for the 2PL model the different num-

er of constraints between filtering scenarios S2 and S3 leads

o a 2×129=258 additional parameters (χ2(250) = 287.88 for

=0.05). The results indicate that the conclusions are very signifi-

ant with p << 0.05

Moreover, the quality of the resulting datasets in each filtering

cenario could be related to the number of constraints involved in

t. Following this hypothesis, the quality of the constraints should

e higher in larger datasets since the fitting error would be lower

ue to a larger number of evidence. Nevertheless, as we can see in

able 1, that is not true: filtering scenario 3 has fewer constraints

han filtering scenario 2 but the quality is higher (see Table 3a),

hich suggests that the filtering criteria actually remove from the

tudy those constraints that do not provide important information.

.3. Grouping strategy

According to the grouping strategy the number of students

aries from one condition to another (see Table 4). More stu-

ents implies more parameters (1 by each student), and the higher

he number of parameters, the lower expected negative-twice-log-

ikelihood. Once again, we use the χ2 distribution to determine if

hese differences are significant.
Table 5 shows the average negative-twice-the-loglikelihood val-

es for the 18 calibrations that used the 2PL IRT model applying

onditions of filtering scenario S3. The first four rows correspond

o the CK-session grouping strategy with different TCK threshold

alues, while the other two corresponds to the “first time relevant”

ethod and the grouping by problems criteria, respectively.

With respect to the best way to construct the performance

atrix, the “first time relevant” grouping criterion performs bet-

er than any other CK-session strategy, irrespective of the TCK val-

es. The results are very significant with p << 0.05. In general, the

ower the TCK value, the better the calibration quality, but these

esults are not always significant.

However, the grouping by problems criterion outperforms the

first time relevant” grouping criterion. Even considering the

igher degrees of freedom for the χ2 distribution, (χ2(1000) =
074.68 for p=0.05), the results indicate that this strategy leads

o statistically significant IRT model fit.

These results could be explained by the fact that the method

f grouping constraints by problems produces a larger number of

irtual students. This implies that our CK-session method is not

ppropriate for calibration independently of the TCK values. Instead,

he original approach of “the first time relevant” is a better option.

he idea of the CK-session is a too coarse-grained methodology to

e used in the calibration process of CBM+IRT and, thus, a more

ne-grained one, such as the grouping of evidence by problems

roduces better-quality calibration.

. Conclusions

Assessment is an important part of any learning process since it

s used as a way to determine the starting knowledge state of the

tudent, how this knowledge evolves during the instruction and,

t the end of this process, to compute the level of achievement.

n computer-based educational research, one of the challenges

s the construction of problem-based environments. Automatic

ssessment of these kinds of tasks (i.e. the problems or complex

xercises) is complicated due to the complexity of the knowledge

equired to be applied by the student. The combination of CBM

nd IRT can be used as a well-founded approach for this type of

ssessment.

When the technique is applied to the data of a CBM system for

earning purposes with a large number of students using the sys-

em and multiple sessions over long periods of time, some limita-

ions have to be taken into account. The main limitation is related

o the way in which characteristic curves are calibrated. Calibration

s an important previous stage when assessment is accomplished

ith data-driven theories such as IRT. One of the requirements of

RT to accomplish calibration is to have available datasets of stu-

ents’ performance where the knowledge of each individual had

o be kept constant. This means that during the process of collect-

ng this information, no learning could happen. This requirement is

ifficult to satisfy when data is taken from learning environments.

To study the applicability of different calibration strategies in

real environment, we used log data from SQL-Tutor collected
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over three years. To guarantee that this principle is met we have

introduced two concepts, i.e. the “CK-session” and the “virtual

student”, and described three grouping strategies to construct per-

formance matrices from the raw data obtained from the ITS to be

used to calibrate the IRT models. Additionally, some data filtering

was needed to reduce the “noise” of the data obtained from a ITS.

The main conclusion is that better results are obtained by discard-

ing constraints with low variability, and that the IRT models are

better adjusted if we consider a “virtual student” for each reso-

lution of a single problem in the ITS. Gathering evidence through

problems would produce higher-quality CCCs during the calibration

phase.

In addition, we have explored the performance of the three

most commonly used IRT models. The goodness of model fit has

been measured using the output of the Multilog tool with different

combinations of assembling criteria. The results suggest that the

2PL model is the most suitable to for use with CBM constraints in

all cases, and that there is no reason to use the 3PL model, which

requires more data to be calibrated and fails to provide any signif-

icant improvements.

In order to implement any of these calibration approaches in

future ITS the conclusions obtained in the study presented here

could be taken into account as a guideline. The utilization of these

techniques produces a more accurate calibration of the basic ele-

ments of the system knowledge base, the CCCs. Furthermore, we

would like to explore the performance of this methodology in an

ITS to study the improvement in terms of learning that this ap-

proach could provide.
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