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Most Adaptive and Intelligent Web-based Educational Systems (AIWBES) use tasks in order to collect evi-
dence for inferring knowledge states and adapt the learning process appropriately. To this end, it is
important to determine the difficulty of tasks posed to the student. In most situations, difficulty values
are directly provided by one or more persons. In this paper we explore the relationship between task dif-
ficulty estimations made by two different types of individuals, teachers and students, and compare these
values with those estimated from experimental data. We have performed three different experiments
with three different real student samples. All these experiments have been done using the SIETTE
web-based assessment system. We conclude that heuristic estimation is not always the best solution
and claim that automatic estimation should improve the performance of AIWBES.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The advent of the Internet has entailed the apparition of several
kinds of tools. From an educational perspective, the Internet is a
repository of information that both teachers and students can
use to their own benefit. However, the evolution of technologies
used to develop web-based tools has led to the use of new and
more sophisticated systems. These new tools offer the student a
tutored learning process, emulating the behavior of a teacher in a
classroom. Such systems are called Adaptive and Intelligent Web-
based Educational Systems (AIWBES) (Brusilovsky & Peylo, 2003)
and they are the evolution of two families of systems: Intelligent
Tutoring Systems and Adaptive Hypermedia Systems (Brusilovsky,
2001). The first have emerged as a result of applying Artificial Intel-
ligence techniques to Computer-Assisted Learning (CAL) Systems.
Intelligent Tutoring Systems (ITS) are also influenced by two other
knowledge areas, like Cognitive Psychology and Educational Re-
search. Initially, they were intended to partially automate the task
of providing the student with individualized and self-paced learn-
ing instruction.

In AIWBES, the learning process is adapted to student needs.
This adaptation requires the elicitation and updating of student
models. A student model, also called leaner model, (LM) represents
the perception of the system about the learner (VanLehn, 1988).
Selecting the right task or question to pose according to the stu-
dent model is a central topic in intelligent learning systems. (Bar-
la et al., 2010). The quality of an AIWBES will be determined by
the scope and quality of the data stored in the learner model,
and by the ability of the system to update this model appropri-
ately. This update is usually carried out on the basis of evidence
generated from student examinations. Student responses to tasks
are raw data which should be converted into information and
used to update learner models. The selection of the most appro-
priate task and the process of updating learner models depend
on the properties of the task. Perhaps one of the most relevant
properties is task difficulty. Everybody has a subjective notion
of what difficulty means and, if we asked a set of persons to give
a precise definition of it, they would surely supply related but dif-
ferent statements.

One of the most used techniques for student knowledge diagno-
sis is testing. There are well-known psychometric theories that re-
late observed student responses to his/her knowledge state. Most
of the tests we find in AIWBES are based on the Classical Test The-
ory (CTT). This theory, although easy to apply, does not guarantee
reliable and invariant diagnosis. Item Response Theory, (IRT) ap-
peared later to solve some of those problems.

Both theories, i.e. CTT and IRT, provide statistical definitions on
the concept of difficulty and use data-driven mechanisms to com-
pute the difficulty value. However, we can find that in practice most
systems use estimations provided by human ‘‘experts’’. There are also
some ‘‘mathematical’’ proposals to estimate the difficulty from a set
of features of the task, such as its complexity or the number of con-
cepts involved, by means of a formula that predicts the difficulty or
the student performance.

To sum up, there are three different approaches for estimating
the ‘‘difficulty’’ of a task:

� Statistical, that is, estimating the difficulty from a previous sam-
ple of students.
� Heuristic, that is, by human ‘‘experts’’ direct estimation.
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� Mathematical, given a formula that predicts the difficulty in
terms of the number and type of concepts involved in the task.

Statistical approaches require a previous definition of the con-
cept of difficulty. So it is commonly associated with CTT or IRT
assessment (see Section 2.1), but there is an increasing interest
in the ITS and AIWBES community for data mining methods to ad-
just and fine tune system performance (Romero & Ventura, 2010).

On the other hand, heuristic approaches are common in ITS and
AIWBES, (see Section 2.2), but IRT assessment sometime use heu-
ristic estimation of the item parameters. Teachers, or course cre-
ators, are commonly the ‘‘experts’’ that estimate the difficulty but
there are some experience of using the students as ‘‘experts’’ (see
Section 2.3).

What we have called mathematical approach can also be viewed
as a complex form of heuristic, because the formula itself and the
parameters involved are also given by human experts. This ap-
proach is mainly used in ITS and AIWBES (see Section 2.2), but also
in IRT assessment, for instance to predict the parameters of an item
generated from a template (Geerlings, van der Linden, & Glas,
2013). However, mathematical approaches are commonly related
to complex tasks or problems. In this paper we will focus on simple
tasks, like test questions and compare the statistical and heuristic
approaches to the difficulty parameter estimation.

Another dimension of the problem is time. Parameters need to
be configured in some way before the system can be used. If diffi-
culty parameters are estimated heuristically they mostly remain
unchanged forever because the estimation requires a high costly
human effort. On the other hand, there is a cold start problem for
the statistical approach. This is the case of some IRT models, that
require hundred of data to calibrate. Mixed approaches have been
used in practice, like a heuristic initial estimation followed by a
statistical updating (see Section 2.2). Other authors propose heu-
ristic formulas to continuously update difficulty values, based on
methods like the Elo rating (Klinkenberg, Straatemeier, & van der
Maas, 2011).

This paper tries to contribute to some open research questions:
Do statistical and heuristic estimations of difficulty correlate? Are
heuristic estimations consistent? Do teachers’ estimations and stu-
dents’ estimations correlate? Are heuristic estimations always
reliable?

In this work we have carried out several experiments in order to
study whether human expert (teacher/student) estimations are
similar to difficulty values inferred by applying data-driven tech-
niques. We have also explored the alignment of teacher and stu-
dent viewpoints regarding the quantitative notion of task
difficulty. Our aim is to focus on the relevance of having a clear
understanding of what task difficulty represents, especially in AIW-
BES where educational instruction is adapted to the student needs.

In the next section, primary devoted to the background of this
research, we introduce some notions about student modeling and
knowledge diagnosis. Test theories and how they define the diffi-
culty are considered. We also review some intelligent educational
systems, focusing especially on how they manage the task diffi-
culty. Section 3 introduces the SIETTE system, which has been used
as a workbench to support these experiments. Section 4 describes
three different experiments performed with real students and
shows and discuss the obtained results. Finally, in Section 5 our re-
sults are summarized and some conclusions are drawn.
2. Theoretical background and related work

In this section we present some theoretical background related
to the work presented in this paper and analyze different formal
and informal definitions of the concept of difficulty. As we will
see, it is closely related to the problem of knowledge diagnosis. Ele-
ments used for knowledge diagnostic purposes are generically
called tasks. Tasks are the most interactive part of an assessment,
and their main purpose is to elicit evidences (observables) about
proficiencies (unobservables) (Shute, Graf, & Hansen, 2005).

Two main framework will be presented: formal test theories
CTT and IRT where tasks are usually simple questions, and where
difficulty has a clear meaning; and the ITS and AIWBES where the
difficulty of tasks is defined and used in different ways.

The section continues with a summary of previous work about
the estimation of the difficulty of assessment tasks either by teach-
ers and/or students, analyzing the alignment between teachers’
and students’ point of view regarding problem solving complexity
and strategies to estimate it. Although this is a very interesting
question, we have not found many studies about task difficulty esti-
mation. To find relevant studies a wide variety of computerized
databases were used including Educational Resources Information
Center (ERIC), The ISI Web of Knowledge, ScienceDirect, and Goo-
gle Scholar. The following keywords were combined: difficulty level,
assessment difficulty, item difficulty, task difficulty, calibration and
estimation. Next, the ‘snowball method’ was employed and the ref-
erences in the selected articles for additional works were reviewed,
and also those articles that cite the previously found papers.
2.1. Task difficulty and knowledge diagnosis in CTT and IRT

2.1.1. Classical Test Theory (CTT)
CTT was first used at the beginning of the 20th century and has

been used ever since. According to this theory, the knowledge
(ability or true score) of a student is defined as the expected value
obtained by a student in a certain test. Given a student s, who takes
a test t, his/her knowledge can be expressed as follows:
Yst ¼ sst þ est
where Yst is a random variable representing the observed score of
subject s when answering test t. This is also called the test score.
It is composed of two parts: the true score (sst) and the measure-
ment error (est). Neither is observable. Yst can be computed from
the number of questions answered correctly or any other heuristic.
In turn, the true score is a random variable with normal distribution
with mean equal to zero and unknown variance.

CTT assumes that true score and error are not correlated. There-
fore, if we take two different measurements, the errors we obtain
are independent of each other. The error measurement is indepen-
dent of the true score. In this theory items are characterized by two
parameters: the difficulty, that is, the portion of students who an-
swered the item successfully, and the discrimination factor, whose
value is a correlation between the item and the test score.

CTT has several limitations, e.g. the knowledge measurement is
strongly linked to test features. This means that when we measure
student knowledge, we do not obtain an absolute quantitative
measurement of his/her knowledge, but rather a value that de-
pends on the test taken. This makes it very difficult to compare stu-
dents who have taken different tests. Likewise, item parameters
represent features of a certain population, therefore are not gener-
ic. As a result, the difficulty of an item will strongly depend on the
knowledge levels of those individuals whose performance is used
to infer the difficulty and vice versa.

On the other hand, CTT is easy to apply in several situations
(Hambleton & Jones 1993). In addition, unlike other theories such
as IRT, this theory has fewer requirements, e.g. it requires fewer
examinees. Traditional test-based assessment criteria (percentage
of success, score obtained, etc.) are in keeping with this theory.
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2.1.2. Item Response Theory
This theory is based on two main principles: (a) Student perfor-

mance in a test can be explained according to their knowledge le-
vel, which can be measured as an unknown numeric value h. (b)
The performance of a student with an estimated knowledge level
answering an itemi can be probabilistically predicted and modeled
by means of a function called the Item Characteristic Curve (ICC). It
expresses the probability that a student with certain knowledge le-
vel h will answer the item correctly. ICCs must be calibrated before
being used. In the calibration process, each ICC is statistically
determined from datasets of students who have taken a test previ-
ously. From these results, calibration can be done.

ICCs can be characterized by means of known functions (para-
metric models) or taken directly from the statistical results (non-
parametric models). In the category of parametric models, there
are several functions that characterize ICCs. The most common
functions are the family of logistic curves of one, two or three
parameters (1PL, 2PL or 3PL) defined as follows:

Pðui ¼ 1jhÞci þ ð1� ciÞ
1

1þ e�1:7aiðh�biÞ

where ui = 1 means that the student has successfully answered
item i. If the student answers incorrectly, P(ui = 0|h) = 1 � P(ui = 1|-
h). h is the student’s knowledge level, i.e. what is being measured in
the test. Knowledge level h, takes real values in the interval
[�1,1], but in practical application it is considered only within
the interval [�4.0,4.0] or [�3.0,3.0]. Finally, the three parameters
that determine the shape of this curve are:

– Discrimination factor(ai): It is proportional to the slope of the
curve. High values indicate that the probability of success from
students with a knowledge level higher than the item difficulty
is high.

– Difficulty(bi): It corresponds to the knowledge level at which the
probability of answering correctly is the same as answering
incorrectly. The range of values allowed for this parameter is
the same as the ones allowed for the knowledge levels.

– Guessing factor(ci): It is the probability that a student with no
knowledge at all will answer the item correctly by randomly
selecting a response.

This function is used for modeling the 3PL model. If we assume
that guessing factor is zero, the function obtained is the 2PL model.
If we also assume that discrimination factor is always equal to one,
then the resulting function is the 1PL model, also called the Rasch
model.

The models presented above are dichotomous, since they con-
sider two possible responses, i.e. correct or incorrect. We can
find also polytomous models, where several answers are possible
for each question and each answer has its own characteristic
curve. They are more informative, although they make calibra-
tion process more difficult because instead of calibrating only
one curve per item, we must calibrate one curve per answer
per item.

As mentioned before, IRT can be used to determine the stu-
dent knowledge state. In this theory, the inference process con-
sists of calculating a probability distribution curve P(hu1, . . . ,un),
where u1, . . . ,un is the vector with the responses the student se-
lects for each test item, and h is the knowledge in the concept
whose value is being estimated. One of the most popular estima-
tion techniques is the Bayesian method. It applies Bayes theorem
to calculate student knowledge distribution after taking a test
with n items:

Pðhjui; . . . ;unÞ 1
Xn

i¼1

PðuijhÞPðhÞ
where P(h) represents the a priori student knowledge distribution.
Several alternatives may be used to obtain the new assessment of
the student knowledge distribution regarding the value of P(h). Per-
haps the most commonly used is to consider a flat distribution
where all knowledge levels have the same probability. Another
alternative is to assume a knowledge probability distribution corre-
sponding to the population used for test item calibration. Once the
student’s knowledge probability distribution is obtained, the
knowledge level is usually computed using one of the following
mechanisms. The first consists of calculating the mean (or expected
value) of the distribution. This strategy is called Expectation a pos-
terior (EAP). The other alternative is the distribution mode. This
method is called Maximum a posteriori (MAP). There are computer
software packages that implement these techniques that are com-
monly used by the IRT community, like Bilog-MG (Zimowski, Mura-
ki, Mislevy, & Bock, 1996), Multilog (Thissen, 2003), Parscale (Muraki
& Bock, 1997), Testfact (Wilson, Wood, & Gibbons, 1991), ICL (Han-
son, 2002), or the R package plink. (Weeks, 2010).

IRT can also be used to determine the most appropriate item to
be posed to the student at each point of the test, and also to decide
whether the knowledge estimations are accurate enough to stop
posing questions. These two uses, combined with the student
knowledge state inference, form part of the Computerized Adaptive
Testing Theory (CAT) for further information about IRT and CAT we
refer the interested reader to classical textbooks. (Hambleton,
Swaminathan, & Rogers, 1991; Wainer, Dorans, Flaugher, Green,
& Mislevy, 2000).

2.2. Tasks difficulty and knowledge diagnosis in ITS and AIWBES

The main goal of an educational system is that students learn
new concepts and, accordingly, that his/her domain knowledge
and comprehension should increase. As a consequence, student
models must be updated to take into account the changes in his/
her knowledge state. However the communication channel be-
tween the student and the system, where he/she is being tutored,
is very restrictive as the system can only measure knowledge di-
rectly by monitoring interaction with the student. The process of
inferring student characteristics from the observation of his/her
behavior is called student diagnosis (VanLehn, 1988). This diagno-
sis refers to: (a) all those observable features stored in terms of
specific functions; (b) internal features which must be inferred
from the information stored and relevant to the learning process;
and (c) the method used to extract this information through stu-
dent monitoring and tracking.

The presence of uncertainty is also an important factor that
leads to errors in the diagnostic process. This uncertainty may be
a consequence of errors and approximations during the data anal-
ysis process or may be a result of the abstract nature of human per-
ception and/or information loss caused by quantification
(Grigoriadou, Kornilakis, Papanikolaou, & Magoulas, 2002).

From the Artificial Intelligence point of view, in student knowl-
edge diagnosis, the use of a reliable method is crucial. This method
should be able to analyze effectively (in the same way as a teacher
would do) measurements of student behavior. From these data, the
system should make estimations about his/her performance,
updating the student model accordingly. However most systems
use diagnostic procedures based on heuristics. Consequently, the
results obtained lack credibility. In addition, such systems propose
paradigms that are not viable from a practical point of view. In gen-
eral, their implementations depend on requirements that are diffi-
cult to satisfy. Another disadvantage of these kinds of systems is
that they are applied to specific domains, and are therefore difficult
to extrapolate to other areas.

In the literature there are many systems in which task diffi-
culty is interpreted from different perspectives. For instance, OLAE
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(VanLehn & Martin, 1997) is an assessment system for learning
Newtonian physics. This system uses Bayesian user models and
provides different types of tasks such as quantitative problem
solving activities (where students must compute physical param-
eters), or studying activities (where students can observe how a
problem can be solved step by step) or qualitative problem solv-
ing activities (multiple-choice items). The difficulty of these tasks
has been previously determined by human experts. Additionally,
one of the student activities in this system is to numerically esti-
mate the difficulty of quantitative problems and to indicate the
factors (from a list) that make the task more (or less) difficult.
However, this information is not used to update the student
model.

MDF (mixed numbers, fractions, and decimals) is a mathematics
tutor (Beck, Stern, & Woolf, 1997). This system presents problems of
addition, subtraction, multiplication, and division of whole num-
bers, fractions, mixed numbers, and decimals. Each problem is as-
signed to the topic it evaluates. Furthermore, each topic is broken
down into sub-skills corresponding to the steps of the problem solv-
ing process. The problem difficulty was estimated a priori following
the philosophy; the more sub-skills required to solve a problem, the
harder the problem. In addition, other issues are considered when
estimating this difficulty, such as the area being assessed.

SQL-Tutor (Mayo & Mitrovic, 2000) is an adaptive and knowl-
edge-based teaching system that supports students learning SQL
using a set of problems, which require solving. The adaptation of
instruction is done by adjusting the complexity of the problems
presented to the students and by generating feedback messages
during the process. The difficulty of each problem is assigned a pri-
ori by an expert in terms of its wording, the constructs needed for
its solution, the number of tables/attributes involved, etc.

ELM-ART II (Weber & Brusilovsky, 2001) is an intelligent web-
based educational system, designed to support learning LISP pro-
gramming. It includes tests and exercises. According to their
authors, this system was one of the first to include a module for test-
ing within its architecture. In this system, items are grouped and as-
signed to a knowledge unit. For each item a difficulty parameter and a
weight are defined and both values are fixed. The weight depends on
the group the item belongs to. The difficulty determines how much
evidence is added to the confidence value of the related concepts
when the test item is solved correctly. The confidence value repre-
sents the student knowledge state in a unit. After each student’s item
response in a test, his/her confidence value is updated by multiply-
ing the difficulty and the weight of the item, when the answer is cor-
rect. Otherwise, this product is also multiplied with an error factor
and subtracted from the confidence factor.

A similar approach is used in QuizGuide (Sosnovsky, Lee, Za-
dorozhny, & Zhou, 2008), an adaptive assessment for Java pro-
gramming questions. The system tries to predict the subjective
difficulty of a question for each student according to a formula
that takes into account the number of concepts involved in each
question, their relative weight and the concepts mastered by the
student. The weights are defined heuristically by human experts.

ASSISTment (Feng, Heffernan, & Koedinger, 2009) is a web-
based math tutoring system for 7th–12th grade students. The sys-
tem helps the student learn the required knowledge by breaking
the problem into sub-questions called scaffolding or by giving
the student hints on how to solve the question. The different diffi-
culty of the questions has not been considered in the initial design
of the system. However authors have recently develop a computer
adaptive testing called PLACEments (Whorton, 2013) as an exten-
sion of ASSISTment. The system tries to automatically predict the
student performance in subsequent questions based on previous
responses, using data mining techniques.

Knowledge Tracing (KT) (Corbett & Anderson, 1995) is a tech-
nique to model student knowledge and learning over time. It is
used to predict the student performance based on the estimation
of the probability of having learned the skills involved in the ques-
tion resolution. It is based on the estimation of four parameters:
the initial knowledge, the learn rate and the guess and slip rate.
Individual differences are achieved defining a set of weights asso-
ciated to each student that personalize the four parameters.
Parameters and weighs are automatically calibrated from previous
students’ data. Pardos and Heffernan (2011) have extended the
standard KT model to take into account different item difficulty.
As they say: ‘‘Models like IRT that take into account item difficulty
are strong at prediction, and models such as KT that infer skills are
useful for their cognitive diagnostic results’’.

IRT has also been used in the field of ITS and AIWBES. The SI-
ETTE system (Conejo et al., 2004) was developed as an independent
tool that can be integrated into an ITS. It was integrated in the
ActiveMath-1 architecture (Melis et al., 2001) and MEDEA (Trella,
Conejo, Guzmàn, & Bueno, 2003). A description of this system is in-
cluded in Section 3. Barla et al. (2010) describes a similar system
that combines IRT with an heuristic selection based on the ques-
tions’ concept and the history of questions previously posed. SI-
ETTE includes an automatic selection of concepts as an extension
of IRT framework based also on item difficulties and the precision
of the estimation of the student knowledge level (Guzmán, Conejo,
& Pérez-de-la-Cruz, 2007b).

IRT is also the core of the PEL-IRT system (Chen, Lee, & Chen,
2005). The system was later modified to support based on a fuzzy
version of IRT (Chen & Duh, 2008). They also evolved from a ‘‘voting
approach to determine difficulty parameters of the courseware by
integrating experts’ decision and learners’ voting’’ to ‘‘statistic-based
methods through a conscientious test process to determine difficulty
parameters’’. Similar conclusions has been achieved independently
by Jeremic, Jovanovic, and Gaševic (2012) ‘‘Diagnostic module uses
data about a question’s difficulty level and time necessary to solve it
provided by a human teacher. . . (we also) performs analysis of the sys-
tem’s logs data, compares this data with question’s difficulty level and
time necessary to answer the question. We strongly believe that this
model could significantly’’. Unfortunately, in both cases their paper
does not include any experiments that support their decision.

Many other authors have implicitly recognized this problem,
and recently the interest for an automatic calibration of difficulty
parameters, or automatic adaptation of tasks selection in ITS and
AIWBES systems has increased. There are many proposals that
try to find out a solution using different AI techniques, like fuzzy
logic (Chrysafiadi & Virvou, 2012), Bayesian networks (Millán,
Descalço, Castillo, Oliveira, & Diogo, 2013) neural networks (Cab-
ada, Barrón Estrada, & Reyes García, 2011) or genetic algorithms
(Verdu, Verdu, Regueras, de Castro, & García 2012).

2.3. Teacher’s and students’ tasks difficulty estimation

In psychometry there has been always an interest for the esti-
mation of item parameters by experts. In the literature they are
also called judges or panellists. Lee (1996) suggested that students
could estimate problem difficulty more accurately than teachers.
However, teachers’ estimation has received more attention than
students’ estimation. Impara and Plake (1998) conclude that teach-
ers’ estimation has high accuracy in the average, but underesti-
mated the performance of the borderline students. Plake and
Impara (2001) relate the previous result to a lack of training of
teachers in the previous experiments. They found that teacher’s
estimation could be improved if teachers receive feedback from
group discussion or students performance data. These authors
were mainly interested in the teachers’ perception of the difficulty
and not so interested in actual item heuristic calibration.

van der Watering and van der Rijt (2006) compare the percent-
age of correct answers with the estimation of teachers and
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students. Their work was carried out at the Faculty of Law of a
Dutch University and involved 223 students and 17 teachers. Tea-
cher and students were asked to classify the items in three catego-
ries: easy, not-easy-not-difficult and difficult. They conclude that
teachers’ estimation of the difficulty of the whole test is appropri-
ate; but that they fail to estimate two thirds of the assessment
items and tend to overestimate student performance. They also
conclude that students tend to underestimate their performance.
These authors were also mainly interested in the teachers and stu-
dents perception of the difficulty and not so interested in actual
item heuristic calibration.

In a very interesting pilot study Wauters, Desmet, and van Den
Noortgate (2012) compare six different estimations of the diffi-
culty: (1) IRT calibration based on the study data (using Rasch
1PL model), (2) proportion correct (CTT), (3) learner feedback, (4)
expert rating, (5) one-to-many comparison based on learners’
judgment, (6) one-to-many comparison based on experts’ judg-
ment, and (7) the Elo rating system. Results indicate that propor-
tion correct has the strongest relation with IRT-based difficulty
estimates, followed by student estimation. The experiments were
based on a 318 students population (secondary education) and
13 teachers. The topic was Linguistic and Literature. Authors
explicitly indicate that no generalization could yet be made to
other domains. The results of our study are slightly different but
mainly consistent with these findings. In this paper we limit our
study to (1) IRT calibration, (2) proportion correct, (3) student rat-
ing, (4) teacher rating; which are the most promising techniques
according to previous results.
3. The SIETTE assessment system

SIETTE (System of Intelligent Evaluation using Tests) is a web-
based system for student knowledge diagnosis (Conejo et al.,
2004). This tool is used by teachers as an academic resource either
for formative or summative assessment (Black & William, 2009). The
system is currently regularly used at Malaga University, where to is
linked to the whole University learning management system. It is
also used remotely by different lecturers at the Polytechnic Univer-
sity of Madrid (UPM), the Spanish National University for Distance
Education (UNED), Cordoba University (UCO), etc. SIETTE is used in
several degree courses such as the B.Sc. and M.Sc. in Computer Sci-
ence, B.Sc. and M.Sc. in Telecommunications, the M.Sc. in Forestry
Engineering among others. Courses such as Programming, Com-
piler Construction, Databases, Software Engineering, Logic, Statis-
tics, Physics, Botanic, Zoology, Law, English as a second language,
etc. frequently use SIETTE. Most of its content is in Spanish for
higher education. Its knowledge base contains around 190 courses,
1000 tests, 27,000 items and 30,000 users. Since 2002 when we be-
gun to record, 196,000 test sessions has been taken.

It can be used as an autonomous tool or as a diagnostic module
in other web-based environments. The system provides web-ser-
vices for interacting with other e-learning systems and learning
platforms like Moodle.

SIETTE allows the administration of several types of tests.
Firstly, conventional tests where the evaluation is done according
to heuristics such as the percentage of student success in answer-
ing, or the points he/she has obtained. In addition, the system al-
lows the administration and automatic calibration of IRT-based
tests, including Computer Adaptive Tests (CAT).

We have implemented several mechanisms to ensure the sys-
tem security, such as access by username/password, access restric-
tions according to user groups, IP address, date, location, etc.; to
avoid cheating, such as random posing of questions, isomorphic
item generation from templates, etc.; and several criteria for item
and hints selection, feedback, etc.
The tasks supplied by SIETTE are test items. Three types of items
can be distinguished in terms of the response format. These are
called internal items. Other tasks format are transformed into
these types:

� Multiple-choice items: These items are also composed of a stem
and set of choices, equal or greater than two. In this case, stu-
dents can either leave the item blank or select only one choice.
� Multiple-response items with independent choices: These

items have the same format as the former, but in this case, stu-
dents can select more than one choice (or leave it blank). These
items allow partial credit to be awarded to students. This means
that the item could be partially correct if a student selects some
correct choices.
� Open answer items: In these items, students have to

write the answer (or answers) to a given stem. These kinds
of items are corrected using patterns. SIETTE manages several
types of patterns. The type selected for one item is configured
at item construction. Different patterns can model correct and
incorrect responses. This is useful in formative
assessment when feedback is shown after the item correction,
since this feedback can be adapted to the specific student
response.

SIETTE supports composed items, external items and interactive
items where the student must perform some actions in order to
solve the tasks. However all these formats are finally transformed
into one or more underlying internal items.

From a conceptual point of view the system architecture fits in
with the Evidence-Centered Design (ECD) approach to constructing
educational assessments in terms of evidentiary arguments (Mis-
levy, Almond, & Lukas, 2004) the main goal of this proposal is to
provide a framework to obtain inferences from what students
say or do. In SIETTE the three models can be clearly distinguished:

� The student model: It is an overlay model formed by knowledge
probability distribution rep-resenting the student knowledge in
the concepts assessed.
� The task model: This model is composed of all the types of items

available in SIETTE. It is only in charge of capturing the student
response.
� The evidence model: This model uses the student’s response

supplied by the task model and applies an inference procedure.
This procedure determines the concepts whose knowledge can
be updated. This can be done in terms of the relationships exist-
ing between the concepts. Once the inferences are made, the
corresponding knowledge probability distributions of the stu-
dent model are updated.

From a functional point of view the system architecture con-
tains three elements:

� The assessment framework, where students can take tests. Following
an authentication process, and the selection of the subject and test
to take, the student answers a set of questions. Fig. 1a shows a ques-
tion posed and incorrectly answered. The upper bar indicates the
number of questions previously posed, its correctness (optionally)
and a navigation tool that can allow students to go back and forth
(optionally). This question requests to identify a tree and shows
the correction afterwards (optionally). A green/red mark indicates
a selected/unselected correct response, while the red cross indi-
cates the student incorrect response.
� The editorusing this tool, teachers can create questions and

define tests In SIETTE the content is structured into courses.
The curriculum of each course is composed of hierarchically
structured concepts. Items are linked to the concepts they



Fig. 1. (a) The student assessment framework. (b) The teacher editor.
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assess. Using the editor the teacher can define the stem and
answers, and define other parameters like maximum time
exposure, presentation and selection information, question
metadata, etc. Tests are defined according to different questions
selection criteria, evaluation models, item exposure, access con-
straints, etc. (Fig. 1b).
� The analyzer: A set of tools integrated into the editor interface.

Using it, teachers can review their students’ performance in
the tests and obtain summary information about group perfor-
mance, test characteristics, like descriptive statistics of results,
Cronbach alpha, and other indicators. For each item, the teacher
can inspect different values like the option selection distribu-
tion, (polytomous) item characteristic curves, point biserial cor-
relations, etc. It provides access to the calibration engine, and
export data for external processing. Fig. 2 shows some
screenshots.

There are many features of SIETTE that cannot be described
here. The interested reader is redirected to the system wiki pages.
The system is available at: http://www.SIETTE.org.

4. The experiments

As mentioned before, the main goal of these experiments is to
explore whether we can trust in human experts to determine the
tasks difficulties. We will compare the estimations made by the
human experts (in our case, the teachers) with the data inferred
by applying test theories. These data-driven difficulties will also
be compared with students’ estimations. Additionally, we will ex-
plore the degree of internal coherence among estimations made by
a group of teachers and equally for the estimations made by a
group of students.

We have conducted three empirical experiments with three dif-
ferent courses and student populations. The same procedure was
followed in all three and consisted of the following steps:

1. Instructors of the course constructed a set of test items and a
test specification using the SIETTE test editor.

2. Once the items were constructed and reviewed by all of them,
each teacher provided an estimation of the difficulty of each
item.

3. The test was administrated to the corresponding student popu-
lation through the SIETTE assessment framework.
4. For each test item, each student had to give us his/her estima-
tion of the item difficulty.

5. After being administrated, all the test items were calibrated
according to 1PL, 2PL and 3PL IRT models, and also according
to CTT (proportion of correct answers).

4.1. The botany test

4.1.1. Experimental design
The first experiment was conducted with students from the

M.Sc. in Botany (Polytechnic University of Madrid, Spain). This test
was part of the final qualification of the semester. Students were
around 19 years old. They took a test of 99 items, where two types
of items could be found: multiple-choice items and multiple re-
sponse items with independent choices. Items were presented ran-
domly to each student and choices were also randomly ordered to
avoid possible cheating. A total of 81 students took the test, which
was scored using a point-based criterion. Accordingly, each item
was assigned one point if answered correctly. Otherwise, if the an-
swer was incorrect a negative score was assigned. When the item
was left blank, no score was awarded.

Once students had finished the test, they were invited to evalu-
ate anonymously the difficulty of each item in a discrete scale be-
tween 0 and 10. This scale is the most commonly used in Spain to
evaluate students. A total of 13 individuals provided us with their
personal estimations. Four Botany course teachers provided us
with their estimations of the difficulty of each item. We should
mention that no one (neither teachers nor students) asked us to
clarify the meaning of the concept ‘‘item difficulty’’. They were told
only that they had to express their estimation on a scale of 0–10. It
should be noted that this test was administrated in a controlled
environment, i.e. in the laboratories of the school. This was crucial
in this case since the test results were taken as part of the student’s
final qualification.

After test administration, we calibrated the items using stu-
dents’ performance. First we carried out the calibration according
to the IRT models, i.e. using 3PL, 2PL and 1PL ICC functions. To this
end we used Multilog (Thissen, 2003, which is one of the most pop-
ular tools for this purpose. This program uses the Marginal Maxi-
mum Likelihood item parameter estimation technique.

We also calibrated the items according to CTT. As mentioned in
Section 2.5, difficulty in CTT is defined as the portion of students
who answered successfully. Strictly speaking, this definition does

http://www.SIETTE.org


Fig. 2. The SIETTE analyzer.

Table 1
Cronbach’s alpha values for the Botany test.

Cronbach’s alpha coefficient

Among teachers 0.73
Among students 0.85
Teachers vs. students 0.78
Among test items 0.96

Table 2
Results of paired t-tests for the Botany test.

Mean of differences Confidence interval p-value

Students vs. teachers �0.085 �0.35, 0.16 0.5275
Students vs. CTT 0.380 0.01, 0.74 0.0393
Students vs. 3PL �0.463 �0.82, �0.10 0.0113
Students vs. 2PL 0.080 �0.18, 0.34 0.5544
Students vs. 1PL 0.233 �0.06, 0.53 0.1248
Teachers vs. CTT 0.295 �0.13, 0.72 0.1794
Teachers vs. 3PL �0.548 �0.95, �0.14 0.0085
Teachers vs. 2PL �0.004 �0.36, 0.35 0.9790
Teachers vs. 1PL 0.148 �0.23, 0.53 0.4428
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not correspond to difficulty as much as to the easiness of the item.
Thus, to obtain the difficulty we only have to substrate one from the
easiness value.
4.1.2. Results
First, we needed to know whether the difficulty estimations ob-

tained from teachers and students were consistent. To this end, we
computed Cronbach’s alpha coefficient, which is a consistency
measurement computed using individuals’ estimations. In general,
values greater than 0.70 are considered acceptable. Table 1 shows
Cronbach values for this experiment. The first row refers to the
internal consistency among teachers’ difficulty estimations. The
second row the reliability of student estimations and the third
measures the consistency between the means of these estimations,
i.e. the mean of teachers’ estimations vs. the mean of students’ esti-
mations. As can be seen, even though all results suggest an accept-
able level consistence, the students’ estimations exhibit a higher
(internal) degree of coherence. Ultimately, we observed that the
internal consistency within the test items is very high.

Using the matrix of students’ responses to the test items, we
calibrated the items with the three IRT-based parametric models.
We also compared estimations and calibration results using a
paired t-test with a 95% confidence level. This test compares two
paired sets to determine whether they differ from each other sig-
nificantly. The null hypothesis of paired t-test is that the mean of
the differences is equal to zero. The results of all these tests are
shown in Table 2. The second column contains the mean of the dif-
ferences between the pair estimation-difficulty calibration, the



R. Conejo et al. / Expert Systems with Applications 41 (2014) 594–606 601
third column is the confidence interval of this mean; and the last
column is the p-value of the null hypotheses.

As can be seen, results suggest we cannot reject the hypotheses
that students’ estimation and difficulties calibrated in the 2PL and
1PL models are similar (p-value > a, with a = 0.05). However, the
similarity between students’ estimations and the other two models
cannot be affirmed. We could say the same for the comparison be-
tween teachers’ estimations and calibrations in the 2PL and 1PL
IRT-based models, and even for the calibration results according
to CTT. Nonetheless, the null hypothesis can be clearly rejected
when comparing teachers and 3PL model. The similarity between
estimations made by teachers and students cannot be denied.

We also computed Pearson’s correlation coefficient between stu-
dents’ estimations and difficulties calibrated by using 2PL (r = 0.64)
and 1PL (r = 0.68). These results indicate that there is a large positive
correlation. We did the same for teachers’ estimations and com-
Fig. 3. Scatterplot from the Botany test data, comparing students’ estimations

Fig. 4. Scatterplot from the Botany test data, comparing teachers’ estimations

Fig. 5. Scatterplot from the LISP test data, comparing students’ estimations
pared them to calibrated values obtained by using the 2PL model
(r = 0.43), 1PL (r = 0.49) and CTT (r = 0.50).

Finally, Figs. 3 and 4 represent paired relationships using scat-
terplots. Fig. 4 depicts the association between students’ mean
estimations and the difficulty calibration results in the four mod-
els: CTT, 3PL, 2PL and 1PL. Fig. 5 illustrates the same comparison,
replacing the students’ mean for that of the teachers’.

4.2. The LISP test

4.2.1. Experimental design
This experiment was carried out is part of the academic evalu-

ation of an Artificial Intelligence and Knowledge Engineering
course, a component of the fourth year of the Computer Science
Engineering degree in the University of Málaga (Spain). Students
of this course were around 21 years old and had to pass this test
with calibration results in the models: (a) CTT, (b) 3PL, (c) 2PL, (d) 1PL.

with calibration results in the models: (a) CTT, (b) 3PL, (c) 2PL, (d) 1PL.

with calibration results in the models: (a) CTT, (b) 3PL, (c) 2PL, (d) 1PL.



Table 4
Results of paired t-tests for the LISP test.

Mean of differences Confidence interval p-value

Students vs. CTT 1.975 1.29, 2.66 7.91E�06
Students vs. 3PL 0.651 �0.18, 1.49 0.1215
Students vs. 2PL 1.303 0.54, 2.06 0.0019
Students vs. 1PL 1.432 0.56, 2.30 0.0026
T1 vs. CTT 1.313 0.00, 2.61 0.0489
T1 vs. 3PL �0.010 �1.03, 1.01 0.9831
T1 vs. 2PL 0.641 �0.29, 1.57 0.1664
T1 vs. 1PL 0.770 �0.20, 1.74 0.1141
T2 vs. CTT 1.813 0.84, 2.78 0.0009
T2 vs. 3PL 0.489 �0.51, 1.49 0.3222
T2 vs. 2PL 1.141 0.25, 2.02 0.0143
T2 vs. 1PL 1.270 0.27, 2.26 0.0148
T3 vs. CTT 2.113 0.87, 3.35 0.0020
T3 vs. 3PL 0.789 0.04, 1.53 0.0397
T3 vs. 2PL 1.441 0.69, 2.18 7E�04
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in order to pass the whole course. The test is usually composed of
twenty multiple-choice items with only three choices. In this
examination session, the students had a time limit of 25 min to an-
swer to all items. The experiment was also carried out in a con-
trolled environment, that is, in the laboratories of the school. The
course teachers designed the test in such a way that, at the end
of the test, the correction of all items was shown by SIETTE. The
test was scored using points, in the same way as the former
experiment.

In this case students were also invited to give their estimations
about the item difficulties. None of the students asked us to clarify
the meaning of difficulty. Once again we only provided the scale in
which this value should be expressed, i.e. in the discrete interval
[0,10]. Even though 43 students took the test, only 14 individuals
gave us their anonymous estimations. We also asked the three
course teachers to give us their individual estimations.
T3 vs. 1PL 1.570 0.81, 2.33 0.0003
4.2.2. Results
As in the former experiment, we analyzed the internal consis-

tency of prior data (Table 3). In this case, consistency among stu-
dents’ difficulty estimations was found to be similar to that of
the former student sample and, accordingly, can be considered
good enough. However, Cronbach’s alpha of the teachers’ estima-
tion is under the threshold and therefore suggests lack of internal
coherence. For this reason, we have included in this table a sepa-
rate analysis comparing individual estimations of the three teach-
ers (identified by T1, T2 and T3) with the means of students’
difficulty estimations. These results are shown in the fourth, fifth
and sixth rows, and suggest that the estimation made by teacher
T2 is consistent with student’s one. In addition, we checked the
coherence of all estimations (teachers and students together)
and, in spite of the results for the teacher group, we obtained the
best alpha coefficient of the estimations, i.e. 0.85. Finally, the last
row of Table 3 shows that the intra-test coherence is good.

After the calibration process, we carried out the paired t-tests as
in the former experiment (Table 4). Regarding the students’ esti-
mation, we can clearly reject the equivalence with difficulty values
under CTT and 2PL and 1PL IRT-based models. However, the pair
compared with the 3PL calibration results is not statistically signif-
icant at the 5% level, and therefore we cannot reject the null
hypothesis. After that, we computed the correlation coefficient be-
tween the student group estimation and 3PL difficulties (r = 0.64).
This result suggests a strong and positive correlation.

Due to the lack of coherence among teachers’ difficulty estima-
tions, we have done the t-tests comparing each teacher’s estima-
tion with the calibration results. Data suggest that estimations
made by teacher T3 are not equivalent to any item calibration
model. With respect to teacher T2, although the paired t-tests do
not reject the null hypothesis regarding the 3PL model, Pearson’s
coefficient (r = 0.02) denotes a very low correlation between both
sets of data.
Table 3
Cronbach’s alpha values for the LISP test.

Cronbach’s alpha
coefficient

Among teachers 0.70
Among students 0.89
Teachers vs. students �0.42
T1 vs. students �0.20
T2 vs. students �0.07
T3 vs. students �0.64
Among test items 0.89
Among teachers 0.70
t-Test results for T1 teacher do not suggest the null hypothesis
rejection regarding IRT-based models. This result is greater for the
3PL model. Pearson coefficients for these comparisons are: 3PL,
r = 0.38; 2PL, r = 0.50; and 1PL, r = 0.46. This means that there is a
strong positive correlation between T1 estimations and difficulties
under 2PL. The others only indicate an acceptable degree of
correlation.

Finally, these relationships between students’ and individual
teacher’s mean estimations and the results of calibration have been
represented graphically by using scatterplots in Figs. 5 and 6.

4.3. Fundamentals of programming test

4.3.1. Experimental design
This experiment involved teachers and students of a Fundamen-

tals of Programming course corresponding to the second semester
of the first year of B.Sc. in Telecommunications in the University of
Málaga. The course has around 300 students per academic year
(individuals around 18 years old). The course teachers decided to
offer their students a new activity in order to prepare them for
the final exam. Note that the final exam is composed of a test of
15 multiple-choice items with three choices. This new activity con-
sists of constructing a formative test using SIETTE. The main goal of
this test was to provide students with an environment to train for
the exam from their homes. We call this type of test open test. In
the studies described in Guzmán, Conejo, and Pérez-de-la-Cruz
(2007a), empirical evidence suggests that these tests are useful
for facilitating the student learning process.

The open test of this experiment had several restrictions:

� Each student was allowed to take the test only once a day (this
restrictive facility is provided by SIETTE and is configured dur-
ing the test elicitation process).
� Once the test was finished, the corrections were not shown and

only the final score was supplied to the student. This restriction
was included to force the students to try to complete the test,
rather than simply copying the correct answers to the items.
We have observed in other experiments that many students
adopted this strategy. Instead of doing the actual test them-
selves, they wanted only to see the questions and the correct
answers.
� The first time a student took a test, he/she had to submit a dif-

ficulty estimation of all the test items. Once again, students did
not ask questions about the notion of difficulty. We only pro-
vided the scale in which they had to estimate the difficulties,
i.e. from 0 to 10. We should point out that we informed the stu-



Fig. 6. Scatterplot from the LISP test data, comparing teachers’ estimations with calibration results in the models: Teacher T1: (a) CTT, (b) 3PL, (c) 2PL, (d) 1PL. Teacher T2: (e)
CTT, (f) 3PL, (g) 2PL, (h) 1PL, Teacher T3: (i) CTT, (j) 3PL, (k) 2PL, (l) 1PL.

Table 5
Cronbach’s alpha values for the Fundamental of Programming test.

Cronbach’s alpha coefficient

Among teachers 0.70
Among students 0.89
Teachers vs. students �0.42
T1 vs. students �0.20
T2 vs. students �0.07
T3 vs. students �0.64
Among test items 0.89
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dents that correction would only be available for those individ-
uals who gave us these estimations.

In order to control access to the test, we gave permission only to
those students who requested it from the course teacher. Each stu-
dent had to supply his/her full name and email address. Once all this
information was collected, the teachers gave it to us and we gener-
ated the pair username/password necessary to access to the test.
When all students were registered, the username, his/her password
and the instructions the students had to follow in the test were auto-
matically generated via email. The test consisted of 20 items in
which the format and the item type was the same as that in the
exam.

Students could take the test once a day for a week. Three days be-
fore the exam, the test specification was changed. It contained the
same items but this time after each one the correction was shown.
Once again, we restricted this test to only those students who had
previously given the difficulty estimations.

A total of 233 sessions were collected from 103 individuals
who initially participated in this experiment. Only 42 of these
individuals gave us their difficulty estimations. The three course
teachers also gave us their personal difficulty estimations. As in
the former experiments, nobody asked us about the definition of
item difficulty. The only information we provided was again the
scale in which the values should be expressed: [0,10].

4.3.2. Results
Consistency analysis using Cronbach’s alpha coefficient (Table 5)

shows that there is an acceptable level of agreement among teach-
ers’ difficulty estimations. This value is even better among stu-
dents’ estimations. We also compared the means of both sets of



Table 6
Results of paired t-tests for the Fundamental of Programming test.

Mean of differences Confidence interval p-Value

Students vs. Teachers �0.202 �1.17, 0.77 0.6690
Students vs. CTT 1.156 0.40, 1.91 0.0046
Students vs. 3PL 0.459 �0.34, 1.25 0.2450
Students vs. 2PL 1.214 0.57, 1.85 0.0008
Students vs. 1PL 1.146 0.39, 1.89 0.0047
Teachers vs. CTT 0.954 �0.01, 1.92 0.0529
Teachers vs. 3PL 0.257 �0.92, 1.43 0.6538
Teachers vs. 2PL 1.012 0.11, 1.91 0.0293
Teachers vs. 1PL 0.944 �0.01, 1.90 0.0535
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estimations, i.e. teachers vs. students, but no consistency was
found. For this reason, we analyzed teachers’ estimations sepa-
rately. We did not find any correlation between the mean of tea-
cher’s and students’ estimations. Regarding test item internal
consistency, once again, the coefficient was high.

Table 6 contains the paired t-tests done after completion of the
calibration processes. Even though Cronbach alpha indicates that
there is no consistency among the means of teachers’ and students’
difficulty, the paired t-test suggests we cannot reject the hypothe-
sis of similarity between the pairs of difficulty estimation means.
Nonetheless, Pearson coefficient denotes a low negative correlation
(r = �0.24).

With respect to the comparison between the mean students’
estimation and the four models, the similarity with CTT, 2PL and
1PL can be clearly rejected. Nevertheless, we cannot reject the null
hypothesis for the 3PL model. For this last model, the correlation
with student group estimation is positive and acceptable (r = 0.46).

When comparing the calibration results with teachers’ estima-
tions, the null hypothesis rejection is at the limit for the CTT, 2PL
and 1PL models and accordingly, we do not have enough evidence
Fig. 7. Scatterplot from the Fundamental of Programming test data, comparing students’

Fig. 8. Scatterplot from the Fundamental of Programming test data, comparing teachers’
to support the teachers’ estimations equivalence with the calibra-
tion results of these models. Nonetheless, the evidence does sug-
gest that we cannot reject the similarity with the calibration
results in the 3PL model. In spite of that data, the correlation value
is positive but very low (r = 0.07) and, as a consequence, we cannot
affirm the similarity between the difficulties in this model and tea-
cher’s estimations.

Finally, as in the two former experiments, Figs. 7 and 8 illustrate
the scatterplots representing the associations between students’
estimations and teachers’ estimation vs. the calibration results.
5. Conclusion

The notion of task difficulty is certainly a subjective one. In the
literature we can find many systems that use estimations of diffi-
culty based on the values given by human experts.

However, our study suggests that human estimations are not
realistic. We have performed three experiments. In them we have
varied the subject matter evaluated, the student sample and the
experts (teachers) who estimated the difficulty. We have also tried
to isolate the most important (from the student knowledge per-
spective) component of difficulty, i.e. the content difficulty. For this
purpose we have used simple test items instead of complex tasks.
We consider that in complex tasks the influence of other difficul-
ties is higher, and this would have perhaps affected the results of
the experiments.

According to the first experiment, students’ estimations are bet-
ter than the those of the teachers’ in terms of correlation, when
they are compared to difficulties inferred from the 2PL and 1PL.
models. We could say the same for the second experiment, but this
time instead of comparing to the 2PL and to the 1PL, comparing it
to the 3PL. Moreover, in this case, the evidence suggests that
estimations with calibration results in the models: (a) CTT, (b) 3PL, (c) 2PL, (d) 1PL.

estimations with calibration results in the models: (a) CTT, (b) 3PL, (c) 2PL, (d) 1PL.
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teachers’ difficulty estimations are not valid and are even inconsis-
tent among all the three teachers. Finally, the third experiment
supports the results obtained in the former. The students’ estima-
tions fit in better with the 3PL-based item difficulties. This last
experiment suggests again that teachers’ estimations are not
accurate.

In summary, the three experiments we have carried out support
the hypothesis that human based estimations of difficulty are not
consistent with those obtained through data-driven techniques.
There is also some evidence that favors the hypothesis that stu-
dents’ estimations are better than teachers’ ones. These results
are in line with those previously obtained by van der Watering
and van der Rijt (2006), that concludes that ‘‘students are better
estimators of item difficulty and thatteachers are able to estimate
the difficulty levels correctly for only a small proportion of the assess-
ment items’’. Wauters et al. (2012) also concludes that student esti-
mation are slightly better, but as they explained: ‘‘It needs to be
considered that the estimation by means of learner feedback is based
on a larger sample than the estimation by means of expert rating,
which could explain the difference between learner feedback accuracy
and expert rating accuracy’’. This limitation also applies to this
study.

Finally, we have verified what other authors have suggested,
that is, the high correlation between difficulty values computed
using the four psychometric models used in this study. Correlation
is especially meaningful when comparing 1PL and CTT, with Pear-
son’s coefficient values higher than 0.90. This is similar to the re-
sult obtained by Wauters et al. (2012). In our research we have
also explored the relation with other IRT models like 2PL and
3PL. Our results indicate that difficulty parameters in those models
differ more from the difficulty parameter in CTT, but are closer to
actual human estimations.

Given the empirical results described in this work, we consider
that it is important to have available well-founded procedures to
validate the difficulty of the tasks that teachers create for student
assessment. Teacher’s estimation can be used as an initial estima-
tion to avoid the cold start problem but we need mechanisms to
ensure that diagnostic tools measure what they are designed to
measure. To this end, assessment models based on IRT provide
data-driven techniques for determining task difficulty, and have
relevant properties such as invariance and reliability. We consider
that ITS and AIWBES should benefit from these properties.
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