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Abstract. One of the most popular student modeling techniques currently 
available is Constraint Based Modeling (CBM), which is based on Ohlsson's 
theory of learning from performance errors. It focuses on the domain principles to 
correct faulty knowledge and assumes that a student will reach a correct solution 
without violating these fundamental domain concepts. However, even though this 
is a powerful and computationally simple technique, most student models of 
CBM-based tutors handle simple long-term models or based on heuristics to 
quantitatively estimate the knowledge measured. In this paper we propose a 
student knowledge diagnosis model which combines CBM with the Item Response 
Theory (IRT). IRT is a probabilistic and data-driven theory which guarantees 
accurate and invariant student knowledge estimations. By means of this synergy 
between CBM and IRT we suggest the construction of long-term student models 
composed of the estimations of their knowledge. This paper also includes an 
experiment we have carried out with real students, which explores the validity of 
the diagnoses made with our model. 
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1. Introduction 

In general, Intelligent Learning Systems include mechanisms to diagnose the student's 
knowledge level in order to suggest the most appropriate action and to facilitate 
subsequent learning. Thus, the learning process is personalized to each student's needs 
and preferences. To achieve this, every system needs a student model with an 
estimation of the learner's knowledge. Self [1] pointed out that this task is intractable, 
incomplete and, for this reason, inaccurate models are generally accepted. 

In this sense, one of the approaches which reduces the complexity of the modeling 
task is the Constraint Based Modeling (CBM) technique. This is one of the most 
successful approaches for student modeling, a fact that has been demonstrated through 
its many tutor implementations [2]. CBM reduces the complexity of modeling by using 
the domain principles as a tool to detect student faulty knowledge. Besides this, the low 
computational requirements and the easy application of this technique, in comparison 
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to other approaches such as Model Tracing [3], makes it a very powerful technique for 
building learning tutors. 

CBM-based student model implementations rely on short-term models composed 
of all the student errors, that is, they represent qualitative knowledge estimation. 
Although estimation mechanisms of the student knowledge level in CBM-based tutors 
[4] exist, most of them are usually based on heuristics (excluding some proposals 
which use Bayesian Networks [5]). We consider CBM could be extended in this sense, 
to improve the model with the Item Response Theory (IRT), a probabilistic and well-
founded theory usually applied in testing systems to determine accurate measurements 
of student knowledge. In this way, IRT strengths could be used to improve the 
precision of the CBM student model. Here, we propose a model for student knowledge 
diagnosis through problem solving activities, which combines a CBM-based domain 
model with the assessment mechanisms supplied by the IRT. Unlike CBM-based tutors, 
we do not focus on the tutorial use of CBM. Rather, we use it for diagnosis purposes. 
As a result, our model can diagnose the students’ performance while they solve 
procedural tasks using well-founded techniques. 

In the next section the fundamental principles of CBM and IRT are described. 
Section 3 describes the features of our diagnosis model. Subsequently, we describe the 
experiment we have conducted with real students, which explores the validity of the 
results generated by our model. Finally conclusions and future work are outlined. 

2. Background  

2.1.  Constraint Based Modeling Fundamentals 

The use of CBM in a learning system allows improving the students' learning by 
making them learn from their own errors when solving a problem for a given domain. 
This is Olsson's theory [6] of learning from performance errors, which is the main basis 
of CBM. This theory defines the learning as a two phase process where, first, an error 
is detected and, afterwards, it is corrected. 

Errors occur when students try to solve a problem and do not have the necessary 
declarative knowledge transformed into procedural knowledge. To detect errors, the 
system generates a representation of the solution being built, which is updated 
according to the actions being performed by students in the system interface. This 
representation is checked against a set of principles that form the domain model of a 
CBM-based tutor. These principles, which are the main unit of knowledge in CBM are 
represented as state constraints and must be satisfied by every correct solution for a 
given problem. That is, no correct solution can be achieved by generating a problem 
state that violates any of the state constraints in the domain. 

According to CBM, each state constraint is defined by an ordered pair of 
conditions: Rc, Sc. Rc is the relevance condition and determines the kinds of problems 
and the state for which this constraint is relevant, i.e., where it could ever be applied. Sc 
is the satisfaction condition and contains the error condition that causes a problem to 
infringe the associated principle. When the Rc of a constraint is true for a given state of 
a problem solution, this constraint is pedagogically significant and then, the Sc must 
also be true. Otherwise, the constraint is violated and a mistake has been detected. 

After error detection the student model is updated and the system responds to 
correct the student's misconceptions. Ohlsson postulates that this remediation occurs 



when the students try to apply their procedural knowledge by solving problems and 
they are warned about the violation of principles pertaining to the domain. 

The learning process also depends on the model the system keeps about the student 
knowledge. The short-term student model consists of all violated constraints and those 
that have been satisfied. This model is used to build a long-term student model with an 
estimation of the knowledge and can be used to select the problem to be posed in the 
best possible way to overcome the individual’s misconceptions. Consequently, this 
element is fundamental in a CBM-based tutoring system at the time of adapting the 
learning process. The more accurate the model, the better the remediation and 
adaptation. 

2.2.  Item Response Theory 

The Item Response Theory (IRT), conceived by Thurstone [7], is the most popular 
well-founded discipline in charge of quantitatively measuring certain traits, such as 
intelligence, abilities, an individual's mastery in a particular concept, personality 
characteristics, etc. This theory is based on two main principles [8]: First, the student's 
knowledge for a test item can be explained by a series of factors called knowledge level. 
The second principle states that the relationship between the probability of answering 
an item correctly and the student's knowledge level can be described by means of a 
monotonically increasing function called Item Characteristic Curve (ICC) where the 
greater the student knowledge level, the higher the probability of answering correctly. 
This function is the central concept of IRT. One of the functions used to model the ICC 
is the 3-parameter logistic function (3PL): 

  (1) 
 

where P(ui = 1| θ) represents the probability of answering the item i correctly given the 
student's knowledge level θ , which is usually measured in a continuous scale between 
[-3.0, .., 3.0]. The other three parameters of this curve depend on the item and mean the 
following: ai is a discrimination factor, which is a value proportional to the slope of the 
curve. The bigger this value, the higher the distinction of the knowledge levels over the 
item; bi or difficulty index, which matches the θ value for which the probability of a 
correct response is the same as that of a wrong response (without taking into account 
the ci); finally, ci or guessing index, represents the probability of a student with no 
knowledge at all answering an item correctly. 

The popularity of IRT comes from the consistency of its results: In other theories, 
such as the Classical Test Theory, the student knowledge estimation results depend on 
the population where a certain test is carried out, and the test score cannot be compared 
to others obtained in different tests. In contrast, IRT has invariance, i.e., the knowledge 
level inferred using this theory does not depend on the test taken. As a result, if two 
different tests measuring the same concept are administered to the same student, we 
should obtain a similar estimation of his/her knowledge level. 

In order to apply the IRT, it is necessary to have the ICC values corresponding to 
each item of the domain available. To this end, a prior statistical data-driven phase of 
calibration is needed. In this procedure the parameters describing the ICC are inferred. 
The calibration entry is formed by the set of students’ performances who took the items 



(whose characteristic curves need to be inferred). The only information needed from 
these performances is the answer to each item. 

The main use of IRT is in adaptive tests [9], which are tests where the presentation 
of each item and the decision to finish it are decided dynamically, based on students' 
answers. The final goal of an adaptive test is to quantitatively estimate the student 
knowledge level using the fewest number of items possible. 

3. The Student Knowledge Diagnosis Model  

Mitrovic and Martin [4] have demonstrated empirically the validity of the CBM 
strategy and also that it is more suitable than other approaches. However Ohlsson and 
Mitrovic [10] pointed out that, to support a wide range of pedagogical decisions, it is 
necessary to model long-term student knowledge. In this sense, most of the CBM-
based tutors compute the student knowledge level as the proportion of constraints 
he/she knows. This heuristic has none of the desirable features of knowledge diagnosis 
such as invariance. This means that estimations made in this way depend greatly on the 
problems the students took.  

Consequently, it would be desirable to have well-founded student knowledge 
inference mechanisms, which could guarantee the independence of the estimations. 
Test Theories, more specifically the IRT, provide these desirable features for assessing 
the student declarative knowledge. Nevertheless, at first sight, these theories are 
difficult to apply when procedural activities are being assessed. In fact, to evaluate the 
student's performance in a problem using IRT, the same way as a teacher would do, 
would require too many questions. 

Our proposal tries to overcome the limitations of both techniques, i.e. CBM and 
IRT by combining them. We think that the heuristics commonly used in CBM for long-
term student modeling could be improved by means of a model developed using the 
fundamentals of IRT. Accordingly, we propose a student knowledge diagnosis model 
where knowledge proofs are the actions performed by the student while he/she is taking 
a problem, which in turn, will lead to violating (or not) constraints in a CBM-based 
domain model.  

If in an IRT-based diagnosis model the elements used to determine the student 
knowledge level are the items (i.e. test questions), in our proposal we use the 
constraints. Therefore, each constraint will have a characteristic curve assigned which 
represents the student's probability of firing it. We will call this curve Constraint 
Characteristic Curve (CCC). Observe that the CCC will have exactly the opposite 
shape of an ICC, since ICCs represent the probability of answering correctly 
(knowledge), whereas the CCCs represent the probability of violating a constraint in a 
problem (detection of faulty knowledge). In other words, when a constraint is violated, 
this means that the student lacks knowledge, and therefore, the curve must decrease 
monotonically. The greater the student knowledge level, the lower the probability of 
firing the constraint. In IRT, this could be considered equivalent to a wrong response to 
an item.  

Our diagnosis model is composed of the following elements: 

• The domain model, which merges the domain requirements of a CBM-based 
domain model with those needed by an IRT diagnosis model. Thus it should 
contain the set of problems, the constraints and their relevance to each 



problem (i.e. whether or not the constraint could be violated in the problem), 
and finally the CCCs. 

• The short-term student model: It contains, for each problem solved by the 
student, its relevant constraints, their state, i.e. violated or satisfied, and the 
number of times a constraint has been violated. 

• The long-term student model, which takes the information provided by the 
short-term model and using the CCCs of the domain model infers the student 
knowledge probability distributions in the concepts assessed. 

The student knowledge distribution P(θ | π, τ) can be computed as the product of 
the CCCs of those constraints which have been violated, and the opposite of those 
constraints relevant for the problem which have been satisfied. This equation is 
inspired by the knowledge inference used in IRT: 

  (2) 
 
where � =p1, p2, ..., pm represents the set of problems solved by the student and τ = c1, 
c2, ..., cn the set of constraints for this domain. P(cj | θ) is the characteristic curve of the 
constraint cj; rij is a binary value indicating whether or not the constraint cj is relevant 
for the problem pi; and fij is 1 when the student's actions in the problem pi have violated 
the constraint cj, 0 otherwise. 

In our previous works [11], we use discrete characteristic curves, whose values are 
pairs of knowledge level / probability which can be obtained from reduced amount of 
data. In this proposal, the CCCs are also discrete, where each curve value indicates the 
probability that a student with certain knowledge level has of firing this constraint. 

The result of applying the equation 2 is a probability distribution where we have 
all the knowledge level scale values and for each one, the probability of the student of 
having this value. The knowledge level can be easily inferred using, for example, the 
expected value of such distribution (in IRT it is called Expectation A Posteriori), or the 
knowledge level corresponding to the higher probability (i.e. Maximum a Posteriori). 

The use of IRT provides our model with some advantages: The student knowledge 
estimations are invariant, that is, they do not depend on the problems the student took; 
the degree of estimation accuracy can be controlled; knowledge inference procedure is 
data-driven and well-founded, since CCCs can be inferred from prior student 
performance. 

4. Experimentation 

We have explored whether or not we obtain similar knowledge level estimation results 
when we use an IRT-based test versus a problem solving environment which 
implements our model. To make sure the results of both experiments were comparable; 
we tried to design them in such a way that both systems would evaluate the same 
concepts. For this reason, we chose a well-defined and limited procedural domain: the 
Simplex and the Two-Phase algorithms (the latter being a variant of the first one) [12]. 
In order to make the diagnoses, we used two different web-based tools: the Siette 
system [13], i.e. an application for student knowledge diagnosis using tests; and a 
problem solving environment of Linear Programming which implements our model.  



4.1.  Experimental Design 

The experiment was conducted in November of 2008 with M.Sc. Computer Science 
students from the University of Málaga (Spain). It was incorporated into a six month 
course of Operative Research which involves Linear Programming techniques such as 
the two algorithms mentioned previously. 

Students attended a two hour lecture on these algorithms. The following week they 
were assessed during two different sessions in the laboratories of the School. In the first 
session three problems were administered using our problem solving environment 
which took half an hour. Immediately afterwards, students took a test of 56 items using 
Siette with a time limit of an hour. 

The problem solving environment was designed in collaboration with the course 
teacher and using our experience with former tools for the same domain [14]. The 
environment has an inference engine (implemented using JBoss Rules) where the 
representation of the solution given by the student is checked against the constraints. 
Figure 2 shows the interface provided to the student for solving a problem. 

 
Figure 1. Interface of the Problem Solving Environment. 

 
The teacher also contributed to the identification of the domain constraints. We 

grouped the constraints into three different categories, according to the phase where 
they are applied, i.e. transforming the problem into the Augmented Form, algorithm 
iterations and algorithm endings. A total of eighteen constraints were identified. 
Although this is a relatively low number in comparison to most of the CBM tutors, we 
consider that it is because the knowledge required to apply the Simplex method is very 
specific, well-defined, and has a reduced set of principles. 

The problems presented to students in the first session were designed with the goal 
of covering as many constraints as possible. Accordingly, the teacher suggested three 
problems: one for applying the Simplex algorithm with only one solution, another for 
the same algorithm but with infinite solutions, and finally one for applying the Two-
Phase algorithm. After each problem, the students were only shown a feedback 
indicating whether or not the solution was correct. 



The Siette test was comprised of 56 items. In the construction of this test we tried 
to elaborate items which were appropriate to evaluate the same knowledge as the 
problem constraints. Most of them (52 items) were multiple-choice with four choices 
where only one was correct. The rest were open answer items corrected automatically 
by means of regular expression-based patterns. 

Initially, 23 students participated in the experiment. However, due to several 
problems (for instance, some students left the session before finishing it), the data from 
seven of them were discarded. With the performances of these students we performed 
the following steps: First of all, we calibrated the test ICCs. To this end, we needed the 
students' performance in the test, i.e., we needed to know, for each student which items 
were answered correctly and which ones incorrectly. With this information we carried 
out the calibration process with MULTILOG [15], which is one of the most popular 
tools for this purpose. We also indicated that curves should be calibrated according to 
the 3PL model. Once obtained the calibrated ICCs, we inferred the students' knowledge 
level in the test. 

Next, we accomplished an analogous process with the data obtained from the 
problem solving environment. First we calibrated the constraint curves. As mentioned 
before, in our model, we assume each constraint is equivalent to an item. Therefore, to 
perform the calibration, we needed to know, for each student, the constraint which they 
violated and which they did not. Once again we used MULTILOG for this purpose. 
The calibration process results were the CCCs with which we computed the students' 
knowledge level using equation 2. 

4.1.  Results 

The goal of this experiment was to compare the student's knowledge diagnosis 
provided by Siette with the student's knowledge level inferred by our model. 
Consequently, we compared both values using a paired t-test with a 95% confidence 
level, which is an appropriate technique for cases such as this where the sample size is 
small. This test compares two paired sets to determine whether they differ from each 
other significantly. The null hypothesis of paired t-test is that the mean of the 
differences is equal to zero. The result, p=0.2091, clearly suggests we cannot reject the 
hypothesis that students' knowledge estimations made by Siette are similar to those 
made by our model. 

5. Conclusions and Future Work 

In this paper we have introduced a model for assessing knowledge. This proposal 
combines the fundamentals of CBM with perhaps the most popular well-founded 
theory for test-based assessments, i.e. the IRT. With this combination we have tried to 
overcome some of the problems each of the techniques have separately. From the 
student diagnosis perspective, the incorporation of IRT-based assessment techniques 
could improve the CBM diagnosis, thereby guaranteeing the reliability and the validity 
of the results. Moreover, using our model, IRT can be applied to procedural domains, 
alleviating the overload that a long test could cause the students.  

The experiment described has explored whether or not the student knowledge 
estimations using only an IRT-based testing system are comparable with our proposal, 
which combines IRT with CBM. Statistical analysis suggests that our model could 



diagnose in the same way as an IRT-based test does. However, whereas our proposal 
assessment session is composed of three problems, the IRT-based test contained 56 
items. In this sense, we should point out that we selected a domain with a reduced set 
of constraints, since otherwise the test would have required a huge number of test items 
to be able to carry out a fair comparison between models. In our proposal, CBM 
constraints serve as student knowledge evidence providers with a lower cost than test 
items. 

Regarding future lines of research, the work presented here is the first stage of a 
framework we are developing for constructing student models and procedural diagnosis 
tools based on this proposal [16]. Moreover, we think that new features could be added 
to our model by taking advantage of some characteristics of IRT, such as adaptive 
problem selection, which could allow the most appropriate problem to be selected 
dynamically; adaptation of the length of a problem solving session in terms of the 
required diagnosis accuracy; or problem difficulty inference. 
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