
A SOA-Based Framework for Constructing Problem Solving Environments

Jaime Gálvez, Eduardo Guzmán, and Ricardo Conejo
Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga.

Bulevar Louis Pasteur, 35. Campus de Teatinos. Málaga, Spain
{jgalvez, guzman, conejo}@lcc.uma.es

Abstract

In this paper we present a framework for construct-
ing problem solving environments for assessing procedural
knowledge, i.e. the student’s ability to apply his/her knowl-
edge in order to accomplish a task. Our proposal combines
the most recent technologies for web-based development
(e.g. service oriented architectures, JSF, JBoss rules, etc.)
with a well-founded theory to make sound student knowl-
edge estimations and to carry out diagnosis adaptively.

1. Introduction

Assessment could be defined as the process of inferring
what a student knows, based on evidence obtained from the
student’s actions or behavioural observations [3]. The rele-
vance of assessment is very high, since it allows observers
to determine whether or not the student has assimilated the
notions introduced during a learning process.

In this paper we present a web-based framework for con-
structing problem solving assessment environments. This
framework has been developed as a Service Oriented Archi-
tecture (SOA) [1] and, accordingly, its functionalities have
been organized in a set of services. Our main goal is to
facilitate the construction of problem solving assessment
tools and also to provide these systems with mechanisms
for making the assessment process adaptive and/or to guar-
antee well-founded diagnosis of student’s knowledge.

Using this framework we have developed a problem
solving tool to evaluate whether the students are able or not
to apply the Simplex or the Two-Phase algorithms in order
to solve linear optimization problems.

The paper is structured as follows. In section 2 we de-
scribe the architecture of our framework and the services it
provides. In section 3 we approach the Simplex assessment
tutor, developed using the framework. Finally, we comment
on the contribution of this paper and outline future work.

2. Architecture

Our proposal is a web-based and service-oriented frame-
work designed on the J2EE platform. Accordingly this
framework takes advantage of the services and facilities this
technology offers.

Figure 1. Tutor Architecture.

We distinguish three layers as can be seen in Figure 1.
The most external one is the client layer which is formed
by the web browser tool through which the users (students
and teachers) could access the system developed with this
framework. The middle one, that is the server layer, cor-
responds to the part of the system deployed in a J2EE ap-
plication server. This layer is in turn organized into three
tiers. Lastly, the most internal part of the architecture, i.e.
the data layer, refers to the information stored by the sys-
tem and is composed of the student model repository and
the knowledge base. The first one contains all the student
models of the users of the system. The knowledge base has
the domain information expressed by means of rules and
problems.

The server layer is structured into the following parts: a)



The presentation tier: This part contains all the interface
components. Here developers should construct a student
module for presenting the problems and an authoring tool
to elicit the domain. We suggest the use of Java Server
Faces (JSF) technology for this purpose. JSF is a user inter-
face component framework which facilitates the construc-
tion of sophisticated and interactive web applications. With
this technology web-based applications look like java inter-
faces developed with Swing API. b) The business logic tier:
This side is composed of all services which are in charge of:
selecting the most suitable problem to be shown, inferring
the constraints fired, assessing the student and determining
whether the problem solving session should finish or not. c)
The persistence tier: This part of the framework supplies
access to the information stored in the data layer and is in
charge of ensuring the consistence between information of
the student model repository and the knowledge base, and
the data managed by the rest of the services. This is done
by a persistence management service, we have developed
for this purpose. Accordingly this tier is the container of the
student and the domain models, and has been implemented
using the Java Persistence API.

3. Use Case: The Simplex tutor

Using the previous framework, we have implemented the
Simplex tutor2. This tool allows teachers to assess their stu-
dents while they are solving problems in which they have to
apply either the Simplex or the Two-Phase algorithms. The
Simplex method consists of an iterative algorithm, proposed
by Dantzig in 1940, where the problem must be represented
by means of a table which contains all data relating to the
problem. Between two different iterations, the data in the
table is changed in order to find a point (or points) whose
value is maximum or minimum for a given function, known
as an objective function. Different kinds of problems exist
which can be classified by their difficulty depending on the
skills needed to solve the problem [2].

The operating mode of this system is as follows: Once
a student is registered, the system poses him/her a problem.
This problem is generated randomly the same way as in
[2], and must be solved by constructing a solution in differ-
ent phases. We have separated the process into three main
phases. The first one consists of transforming the problem
into a standard form, i.e. rewriting the problem into an-
other equivalent one with the required format according to
the Simplex algorithm. Once the problem is in this format,
it is put in a table in order to start the Simplex or the Two
Phase method. This is a decision that must be taken by the
student. The second step consists of iterating over the table
obtained in the previous phase. The last phase occurs when
the iterations have finished and the student must identify a
solution.

Figure 2. Simplex Tutor Interface.

4. Conclusions

The main contribution of this paper is a framework to
develop problem solving assessment tools.

We have tried to profit from the most recent technolo-
gies of distributed and loosely coupled architectures. In this
sense, we have constructed this framework as a service ori-
ented architecture. Therefore, we offer a set of services and
accordingly developers should focus mainly on the presen-
tation tier components and the domain elicitation.

For a first validation of this framework, we have devel-
oped a tutor which assesses the students while solving prob-
lems of linear programming using the Simplex or the Two
Phase algorithms. We have used this framework because
this is a domain where the final solution is not enough to
determine the student’s knowledge level, since it consists of
a simple value, i.e. right or wrong. The most relevant infor-
mation to evaluate the students can be found at the solution
building process.

Within a short time, we plan to use this diagnosis tool
with real individuals in a group of university students. Re-
garding future research lines, we are working on new com-
ponents to automate the presentation layer construction and
the elicitation of the domain model.

References

[1] T. Erl. Service-Oriented Architecture : Concepts, Technology,
and Design. Prentice Hall PTR, 2005.

[2] E. Millán, E. Garcı́a-Hervás, E. Guzmán, Ángel Rueda, and
J.-L. P. de-la Cruz. Tapli: An adaptive web-based learning
environment for linear programming. In CAEPIA, pages 676–
685, 2003.

[3] J. Pellegrino, N. Chudowsky, and R. Glaser. Knowing what
students know: The science and design of educational assess-
ment. 2001.


