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Abstract This paper presents an approach to student modeling in which knowledge
is represented by means of probability distributions associated to a tree of concepts.
A diagnosis procedure which uses adaptive testing is part of this approach. Adaptive
tests provide well-founded and accurate diagnosis thanks to the underlying probabi-
listic theory, i.e., the Item Response Theory. Most adaptive testing proposals are based
on dichotomous models, where the student answer can only be considered either cor-
rect or incorrect. In the work described here, a polytomous model has been used, i.e.,
answers can be given partial credits. Thus, models are more informative and diagnosis
is more efficient. This paper also presents an algorithm for estimating question char-
acteristic curves, which are necessary in order to apply the Item Response Theory to a
given domain and hence must be inferred before testing begins. Most prior estimation
procedures need huge sets of data. We have modified preexisting procedures in such
a way that data requirements are significantly reduced. Finally, this paper presents the
results of some controlled evaluations that have been carried out in order to analyze
the feasibility and advantages of this approach.
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1 Introduction

Some of the features which determine the quality of an intelligent tutoring system
(ITS) are the suitability of its student model and the accuracy of the corresponding
diagnosis mechanisms, since information stored in student models has a high impact
on training and knowledge (Papanikolaou et al. 2003). However, several researchers
such as Self (1994) have stressed the inherent difficulty of student model construction
and initialization (Zukerman and Albrecht 2001).

All measurement tools must fulfill some requirements to ensure scientific adequacy:

– Validity: Validity does not depend on the tool, but on how it is applied. A mea-
surement tool has this property when it actually measures what it is supposed
to. Therefore, procedures to check validity are based on establishing relationships
between results and other observable facts in direct relation to the kind of capability
being measured.

– Reliability: This feature refers to the accuracy of measurement, independently of
the features being measured. A tool must exhibit stability and consistency, i.e., when
performing the same procedure with the same individual in similar circumstances
twice, similar results are obtained.

– Objectivity: A tool has this feature when results are independent of the observer’s
opinion or personal perspective. Frequently, objectivity leads to reliability.

When inferring student models it would be desirable to use mechanisms which ensure
that these requirements are fulfilled. In this sense, the evidence-centered design (ECD)
proposal is a framework for designing, producing and delivering educational assess-
ments (Mislevy et al. 1999, 2000). ECD models incorporate representations of what
a student knows and does not know, in terms of the results of his/her interaction
performance (evidences) with assessment tasks (Shute et al. 2005). ECD is basically
composed of the following three models: (a) A student proficiency model, which
collects the skills or other attributes to be assessed. (b) Evidence models, i.e., the
performances which reveal targeted performances, and the connection between these
performances and the student model variables. (c) A task model, that is, the tasks
which elicit those performances. The use of the ECD framework in assessment design
should contribute to achieve effective and efficient diagnoses (Mislevy et al. 1999).

One of the most popular solutions for student diagnosis (and that contemplated
in this paper) is testing. A test is an assessment exam composed of a set of questions
(called in this context items). From an abstract point of view, each item is composed
of a stem (the question or situation posed to the student) and a set of choices (the
possible answers). It is widely accepted that tests have some desirable features such
as generic applicability (i.e., they can be applied to a broad class of domains) and
instructional efficiency (i.e., not too much effort is required in order to administer and
correct a test).

Test-based diagnosis systems in the real world tend to use heuristic solutions to
infer student knowledge. However, there is a type of tests, adaptive tests (a.k.a.
Computerized Adaptive Tests) (van der Linden and Glas 2000), which are based on
a sound statistical grounding, namely the item response theory (IRT) (Embretson
and Reise 2000). In this way, these kinds of tests, when properly constructed and
administered, can contribute to fulfill the requirements stated above.

The most popular implementations of adaptive tests make use of dichotomous IRT
models. This means that an answer to a question can be evaluated as either correct



Adaptive testing for hierarchical student models

or incorrect, i.e., no partial credit can be given. However, other models can be and
have been defined within the IRT framework (polytomous models) that can attribute
partial credit to item answers (Embretson and Reise 2000). These are more powerful,
since they make better use of the answers provided by the students and, as a result,
student knowledge estimations can be obtained more quickly and more accurately. A
lot of polytomous models have been proposed in the literature (e.g., Samejima 1997;
Bock 1997; Muraki 1992; Thissen and Steinberg 1997), but they are seldom applied to
adaptive tests.

The reason for this lies in the increased difficulty of item calibration for polytomous
models. The relationship between answers and knowledge states is expressed by prob-
ability distributions (response curves or item characteristic curves, ICCs) which must
be learnt before administering adaptive tests. This is the item calibration procedure,
and the calibration of each curve usually requires lots of information (the results of
students who have taken the test previously). Since polytomous models are defined
by a greater number of response curves, the amount of data needed for calibration
grows even more and becomes infeasible.

Even assuming that adaptive testing is appropriate for student diagnosis, a fun-
damental problem must be solved before using it to this end in ITS environments:
the consideration and handling of information about multiple knowledge factors (i.e.,
concepts, skills, . . .) There are theoretical proposals inside IRT that define and make
use of multidimensional representations (e.g., Embretson 1991; Tam 1992; Segall
1996); however, these proposals quickly become unrealistic, due to the huge amount
of data and computation needed. On the other hand and from a practical point of
view, inside the student modeling community there are several proposals which apply
adaptive testing techniques (e.g., Huang 1996; Collins et al. 1996); they make use of
heuristic approaches, thereby making adaptive tests partially lose their solid founding.

In this paper we present a cognitive student modeling approach based on the
following assumptions and principles, which will be discussed and justified in Sect. 3:

– The domain model is a concept tree.
– Student models are obtained by attaching a discrete knowledge level to each node

of the domain model.
– The system maintains a probability distribution which at each moment, estimates

the student model at that point in time.
– Diagnosis is carried out by means of adaptive testing.
– Testing is based on a discrete polytomous IRT model.
– Item calibration is based on an efficient and partially new algorithm.

The next section summarizes the theoretical basis of this work, i.e., the adap-
tive testing theory and IRT. Section 3 describes in detail our proposal for student
modelling. The corresponding procedure for knowledge diagnosis is described and
discussed in Sect. 4. Section 5 presents a partially new algorithm for learning charac-
teristic curves. The algorithm has fewer requirements than the solutions usually found
in the literature. Section 6 makes a summative evaluation of this proposal in order to
analyze its advantages and feasibility. In Sect. 7, some related works are described,
focusing specially on their differences and similarities with ours. Finally, in Sect. 8, the
contributions of this work are discussed and some conclusions are drawn.
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2 Preliminaries

2.1 Computerized adaptive testing

The final goal of an adaptive test is to quantitatively estimate a student knowledge
level expressed by means of a numerical value. To this end, items are posed sequen-
tially, one at a time. The presentation of each item and the decision to finish the test
are dynamically adopted based on the student’s answers. In general, an adaptive test
applies an iterative algorithm which starts with an initial estimation of the student’s
knowledge level and has the following steps: (1) All the items in the item pool (that
have not yet been administered) are examined to determine which is the best item
to ask next, according to the current estimation of the examinee’s knowledge level;
(2) The item is asked and the examinee answers; (3) According to the answer, a new
estimation of his/her knowledge level is computed; (4) Steps 1 to 3 are repeated until
some finalization criterion is met.

Selection and finalization criteria can be theoretically determined according to the
required assessment accuracy, and are controlled by certain parameters. The number
of items is not fixed and each examinee usually takes a different number and sequence
of items.

In this way, the basic elements in an adaptive testing system are:

– Response model: It describes how examinees answer the item depending on their
knowledge level, thus providing the probabilistic foundations of adaptive testing.

– Item pool: It contains a certain number of correctly calibrated items at each
knowledge level.

– Item selection method: Adaptive tests select the next item to be posed depending
on the estimated knowledge level of the examinee (obtained from the answers to
items previously administered). However, there are several procedures to take into
account at this level.

– Termination criterion: Different criteria can be used to decide when the test should
finish, depending both on the desired accuracy and on the intended use of the
information gathered.

The main advantage of adaptive testing is that it reduces the number of questions
needed to estimate the student knowledge level and as a result the time spent on estab-
lishing it. This results in an improvement in examinees’ motivation (van der Linden
and Pashley 2001). The accuracy of the estimation is much higher than the estimation
achieved by randomly picking the same number of questions (Conejo et al. 2004).
However, adaptive tests have some drawbacks. They require the availability of huge
item pools and techniques to control item exposure and detect compromised items.
Also, item parameters must be calibrated. To accomplish this task, a high number of
examinees’ performances are required and these are not always available. However
these considerations could be relaxed somewhat for merely formative purposes, e.g.,
to support learning, as is the case with ITS.

2.2 Item response theory

The response model is the central element of the adaptive testing theory (usually
based on IRT (Lord 1980)). It provides a probabilistic, well-founded theoretical back-
ground. By virtue of the response model, the following issues can be theoretically
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determined: (i) how the student knowledge is inferred; (ii) which is the most suitable
item which must be posed to each student in the next step; and (iii) when the test must
be finished.

IRT is based on two principles: (a) Student performance in a test can be explained
by means of his/her knowledge level; (b) the performance of a student with a certain
knowledge level answering an item, can be probabilistically predicted and modeled
by means of certain functions called characteristic curves. There are hundreds of IRT-
based models, and different classification criteria for them. One of these addresses to
how the models update the estimated student knowledge in terms of his/her response.
Thereby, IRT-based models can be:

– Dichotomous models: Only two possible scores are considered, i.e., either correct or
incorrect. A characteristic curve is enough to model each item, the item characteris-
tic curve (ICC). It expresses the probability that a student with a certain knowledge
level will answer the item correctly.

– Polytomous models: The former family of models does not make any distinction in
terms of the answer selected by the student. No partial credit is given. This means
information loss. To overcome this problem, in this family of models each possible
answer has a characteristic curve. These curves express the probability that a stu-
dent with a certain knowledge level will select this answer. These kinds of models
also allow the blank response to be modeled by means of a characteristic curve.

Polytomous models usually require a smaller number of items per test than the dichot-
omous ones. Nonetheless, dichotomous models are most commonly used in adaptive
testing environments. The main reason is that the calibration process is harder in
polytomous models. Instead of calibrating one curve per item, a set of characteristic
curves must be learnt per item. This means that the set of previously done test sessions
must be higher. While a test of dichotomous items requires several hundreds of prior
test sessions, a test of polytomous items requires several thousands.

3 A proposal for hierarchical modeling and assessment

The proposal presented in this paper can be viewed as a trade-off between several
conflicting requirements. From a theoretical point of view, diagnosis methods should
be sound and well-founded on generally accepted formal theories. On the other hand,
from a practical perspective, the knowledge engineering effort, the amount of data
needed to calibrate the model and the computational burden imposed on the system
must be affordable. Finally, from a pedagogical point of view, domain and student
modeling should be accurate enough to support effective adaptive instruction.

In ITS literature, the representation of the knowledge to be communicated is usu-
ally called Expert Module (Holt et al. 1994), that corresponds to the proficiency model
in Mislevy’s ECD framework. We will assume that knowledge can be structured into
a tree of concepts; for this reason, the expert module will be called Conceptual Model
throughout this paper. This model is described in Sect. 3.1. A Student Model is the
representation of the student state at a certain step of the instructional process. Over-
lay models are used in our proposal. They represent the student knowledge as a subset
of the Expert Module. Issues of student modeling are discussed in Sect. 3.2.

The student model update is performed by the Diagnosis Module. This is the main
problem addressed by this paper and solved by means of a general procedure based
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Fig. 1 Relationship among modules and elements

on IRT. The procedure is fully described in Sect. 4. However, for every domain, this
general procedure must resort to specific domain knowledge, concerning the possible
questions to be administered to the student and the dependences between questions
and concepts. This knowledge is structured in an item pool, whose description is
addressed in Sect. 3.3. But the update may not be needed for the whole student model
however; for this reason, the definition of several test specifications (described in 3.4)
is also considered.

Thus, the knowledge provided by the course developer can be seen as a triplet
(�, �, �) composed of a concept tree �, a set of items � and a set of test speci-
fications �. Notice that this knowledge is qualitative in nature and can be mostly
expressed in terms familiar to course developers: what are the parts and subparts of
this course? Which part of the course does this test item belong to? Which part of the
course do you want to diagnose? On the other hand, quantitative information needed
by the diagnosis procedure will be collected and computed automatically when cali-
brating the domain (see Sect. 5). Figure 1 displays a graphical representation of the
relations between �, �, and �.

By applying the diagnosis procedure to this domain knowledge, the system will be
able to interact with a student, select the most suitable questions, process the student’s
answers and stop when a certain state is reached.

3.1 Conceptual model

In traditional teaching, it is customary to structure the contents of a course into parts,
which are in turn divided into subparts, and so on. In this way, a hierarchy of variable
granularity, called curriculum (Greer and McCalla 1994), is obtained.

Curricula are often represented in ITSs by semantic networks, i.e., by directed
acyclic graphs whose nodes are the pieces originated by the partition of the course,
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and whose arcs represent relationships among them. In ITS literature, a huge set
of proposals exist (e.g., Schank and Cleary 1994) in which those parts have different
names depending on their level in the hierarchy, e.g. topics, concepts, entities, chapters,
sections, definitions, etc.

In our proposal, all nodes in the hierarchy will be generically called concepts. As
Reye (2002) states, concepts are curriculum elements which represent knowledge
pieces or cognitive skills acquired (or not) by students. From the point of view of stu-
dent diagnosis, concepts are those elements susceptible to being assessed. Note that
final nodes (leaf nodes) correspond to single concepts or to a set of them indiscernible
from the assessment perspective. Even the root node, which will be called course, can
also be considered a concept.

Regarding relationships, it is assumed, in our proposal, that concepts from one level
are related to the concepts from the previous and the subsequent levels by means of
aggregation relations (“part-of”). That is, the knowledge of a sibling concept will be
part of the knowledge of its parent concept. We will say an inclusion relation exists
between those concepts. This is the only relationship considered in our model. Other
relations such as “prerequisite-of” are not taken into account, i.e., we assume that
the knowledge of a concept is completely independent of the knowledge of the other
concepts at the same level. In this way, the domain model is just a tree of concepts.
This is a real limitation of our approach. However, researchers such as Collins (1996),
have pointed out that prerequisite relationships do not make student model values
more accurate, but using them, diagnosis may require fewer items.

We will say that there is a direct inclusion relation between two concepts Ci and Cj
(Ci, Cj ∈ �) when there is an arc in the graph which comes from Cj and goes to Ci, i.e.,
if there is an aggregation relation between both. This will be denoted by Ci ∈ ℘(Cj).
For instance, taking the conceptual model of Fig. 1, there is a direct inclusion relation
between concepts C1 and C12, or C12 ∈ ℘(C1).

We will say that there is an inclusion relation between two concepts Ci and Cj
(Ci, Cj ∈ �) when there is a directed path in the graph (with at least one arc) which
comes from Cj and goes to Ci, i.e., if there is a chain of one or more aggregation
relations between both. This will be denoted by Ci ∈ ℘+(Cj). Notice that the relation
of inclusion is the transitive closure of the direct inclusion relation.

We will say that there is an indirect inclusion relation between two concepts Ci and
Cj (Ci, Cj ∈ �) when they are related by the inclusion relation but not by the direct
inclusion relation, i.e., when there is a path in the graph (with two or more arcs) which
joins them. This will be denoted by Ci ∈ ℘++(Cj).

Obviously, the inclusion relation (and the indirect inclusion relation) between
concepts is irreflexive, asymmetric and transitive.

From the assessment perspective, when Ci ∈ ℘+(Cj) and a student knows Ci,
he/she will also have a certain degree of knowledge of Cj, since the knowledge of Ci is
(at least part of) the knowledge of Cj.

3.2 Student model

In ITS literature, we can find proposals to model a student by means of comprehensive
structures taking into account, for example, affective states (Conati 2002) or learning
preferences and styles (Carver et al. 1999). These proposals, as interesting as they
can be, pose a set of additional issues when adopting an evidence-centered approach.
For this reason, they are not contemplated in this paper; we only focus on cognitive
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models. Moreover, mental models (Gentner and Stevens 1983), misconceptions and
bug libraries (Burton 1982) are not considered in our proposal; plain overlay models
are used. In this way, a student model is a subset of the conceptual model described
above. More specifically, a student model is approximated by means of a set of dis-
crete probability distributions (one for each concept in the conceptual model). Other
proposals such as (Paek and Chickering 2007) also use probability distributions to
represent user models.

The rationale for such a drastic simplification is clear: it has been possible to define
and implement sound and efficient procedures to update and handle these overlay
models. These procedures are presented in Sect. 4 and tested in Sect. 6.

On the other hand, in psychometric literature, the student is often modeled by just
a real number θ . It is clear that just a real number will seldom be a powerful model for
tutoring; even for assessment tasks, the increasing interest in formative assessment
creates the “. . . challenge of converting each examinee’s test response pattern into a
multidimensional student profile score report detailing the examinee’s skills learned
and skills needing study” (our emphasis) (Stout 2002). Nevertheless, proposals inside
IRT defining and making use of multidimensional representations (e.g., Embretson
1991; Tam 1992; Segall 1996), although theoretically sound, quickly become imprac-
tical, due to the huge amount of data and computation needed in order to calibrate
and handle the models. However, as shown in Sect. 6.4—at least for the simple cases
tested—concept trees yield a feasible approach whose predictive power is comparable
to that of multidimensional IRT.

3.3 Item pool

Items used in adaptive testing are stored in an item pool. According to Barbero (1999),
the notion of an item pool has changed through time, although the underlying idea
remains unchanged: a set of items, which measure the same trait or ability, and which
are stored in such a way that, when required, the item which best fits student needs
can be selected.

In our model, items are used as tools for diagnosing student knowledge, i.e., for
determining which part of the concept tree is mastered by the student. Items are the
entities which provide evidence about what he/she knows. Consequently, they are not
restricted to only multiple-choice items or other classical formats used in paper-and-
pencil tests. In our proposal, an item could be any provider of evidences about the
student knowledge. To simplify, we will consider that the output of an item could
be captured as a choice, allowing not only its correct or incorrect evaluation, but
also partial credits, i.e., allowing a polytomous item modeling (Guzmán and Conejo
2004a).

The author of the course must assign each test item to a concept, i.e., he/she must
determine which concept students must know, in order to answer the item. As a con-
sequence, each concept will have an item pool assigned. In literature, one of the most
popular approaches for assigning items to concepts is the Q-Matrix (Tatsuoka 1985).
It is a matrix of binary values through which the course author indicates the cognitive
tasks (in our case, concepts) needed to answer each item. Accordingly, the number of
rows of this matrix is equal to the number of cognitive tasks involved in assessment,
and the number of columns corresponds to the items available for diagnosis. We will
use an equivalent approach described in the following paragraph.
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First, the author must define the association of an item to a concept. If Qi ∈ �

and Cj ∈ �, item Qi is associated to concept Cj (or item Qi directly evaluates concept
Cj) if the author has stated that the probability of solving correctly Qi depends on
the knowledge of Cj. That is, the answer selected by a student for that item allows
us to make inferences about his/her knowledge level in that concept. To represent
this relation, we define the function ED : � × � → {0, 1}, ED(Qi, Cj) = 1 if Qi is
associated to Cj, otherwise ED(Qi, Cj) = 0. In Fig. 1, the association relation between
an item and a concept has been represented by a line which joins both of them. For
instance, item Q1 is associated to concept C11, i.e., ED(Q1, C11) = 1. It was the course
developer who directly added item Q1 to the pool of C11.

However, despite the fact that each item directly evaluates one and only one con-
cept, it can indirectly evaluate several concepts (Guzmán and Conejo 2002), by taking
into account the relations among concepts of the tree. Given an item Qi and a concept
Cj, the indirect evaluation function of a concept from an item, EI : � × � → {0, 1},
is defined as follows: EI(Qi, Cj) = 1 if ED(Qi, Cj) = 0, and exists Cl ∈ � such that
ED(Qi, Cl) = 1 and Cl ∈ ℘++(Cj); otherwise EI(Qi, Cj) = 0. That is, Qi indirectly
evaluates Cj when there is another concept Cl evaluated directly by Qi and between
them there is an indirect inclusion relation. Notice that the item Qi is not associated
to the concept, i.e., does not belong directly to its item pool.

An item Qi evaluates a concept Cj when Qi evaluates Cj either directly or indirectly.
The corresponding function will be E : � × � → {0, 1}, E(Qi, Cj) = ED(Qi, Cj) +
EI(Qi, Cj).

For example, in Fig. 1, item Q6 directly evaluates concept C311. It also supplies
evidence about the student knowledge on the concept preceding C311, i.e., on C31.
Applying the same reasoning, Q6 also provides evidence about the parent of C31, i.e.,
about C3. Finally, as mentioned before, the whole course, including all its children, is
considered a concept. Thus, Q6 also provides evidence about the course. Items could
directly evaluate either leaf, intermediate concepts or even the whole course. If they
directly evaluate leaf or intermediate concepts, they also indirectly evaluate some
other concepts. However, when an item directly evaluates an intermediate concept,
knowledge about their descendants is not evaluated indirectly.

Until now, the description of the model has remained at a qualitative level. Let
us describe now the quantitative aspects of our proposal. They are expressed by the
response curves or characteristic curves which represent the association between an
item and (the knowledge of) a concept.

We propose a response model with the following features:

– Discrete: Most IRT-based response models are continuous, i.e., the knowledge level
(or generically, the latent trait) is usually measured in the real number domain.
However, discrete models are more efficient from a computational perspective,
since they do not use iterative algorithms (e.g. Newton–Raphson) to compute
knowledge levels. Discretization entails that the knowledge level scale will be com-
posed by K knowledge levels, from zero (absence of knowledge) to K − 1 (full
knowledge). Thus, student knowledge distributions and characteristic curves are
vectors of pairs of knowledge level/probability. Course developers can determine
any number of knowledge levels. However, a constraint is imposed on our model:
the number must be the same for every item and concept in a course.

– Non-parametric: Most response models use parametric approaches for model-
ing characteristic curves. The most commonly used are logistic functions. As a
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drawback, they require more prior information to calibrate the curves. For this
reason, we have adopted a non-parametric approach (Junker and Sijtsma 2001)
to model characteristic curves. In general, the use of non-parametric approaches
leads to relax the strong parametric model assumptions (Domshlak and Joachmis
2007). From the response model’s perspective, non-parametric models economize
the requirements of prior information and make calibration easier.

– Polytomous: One item will have one different characteristic curve per choice. We
call them Choice Characteristic Curves (CCC). They represent the probability of
selecting one choice given the student’s knowledge level. To simplify the presenta-
tion, we will assume that each item has just one correct choice, and therefore the
ICC will be equal to the CCC of the correct choice. We also consider a CCC for the
blank response.

– Hierarchical: Each item will have a set of CCCs associated for each concept it
evaluates. Let us assume an item Qi such as is associated to a concept Cj. Since we
allow evaluation of all the ascendants of a concept Cj, if n is the depth of Cj in the
curricular tree, then there will be n sets of CCCs, one for each concept evaluated
directly or indirectly by the item Qi.

3.4 Test specifications

The third module provided by the course developer is a set of test specifications �. A
test specification describes how assessment sessions will be generated. Its final goal is
to obtain an estimation of the student knowledge in one or more concepts. When test
(or course) developers specify tests they must answer the following questions:

1. What to assess?, that is, which elements of the concept tree will be scrutinized with
respect to student knowledge.

2. What is the student’s initial state? This information will be contained in his/her
student model.

3. How to assess?, that is: (a) Which criterion is going to be used, i.e., how the student
score is inferred from his/her performance in the test. (b) The level of detail: in
how many knowledge levels are students going to be assessed. (c) The scope or the
concepts involved in the test. And finally, (d) How are the assessment elements
(items) sequenced?, that is, the item selection criterion used.

4. When does the assessment end?, since adaptive assessment criteria require an
intended level for the accuracy of the estimation of student knowledge to be
stated.

The answers to these questions are materialized in (i) a set of test configuration param-
eters; and (ii) a set of concepts to be assessed. However, as a collateral effect, and due
to the hierarchical structure of the conceptual model and to the relationships among
items and concepts, a test may also assess other concepts. For this reason we will define
five relations between a test and a concept: direct evaluation of a test on a concept,
indirect downward evaluation of a test on a concept, indirect upward evaluation of a
test on a concept, indirect evaluation of a test on a concept and evaluation of a test
on a concept. Notice that there is no direct relationship between tests and items. This
relationship is established through the concepts of the conceptual model.

Let Ts be an assessment test, Ts ∈ �, and Cj a concept, Cj ∈ �. The direct
evaluation function of a test on a concept, �D : � × � → {0, 1}, is defined as follows:
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�D(Ts, Cj) = 1 if Cj is one of the concepts selected by the teacher to take part in the
test Ts, �D(Ts, Cj) = 0 otherwise. For instance, in Fig. 1, test T3 directly evaluates the
concept C12. In this figure, the connection is described by means of a line joining the
test with the concepts it directly assesses.

We will impose the following restriction: in a test, several concepts can be assessed
directly and simultaneously, but no aggregation relationship is allowed among these
concepts. That is, for all Cj, Ck ∈ �, if �D(Ts, Cj) = 1 and �D(Ts, Ck) = 1 then
Cj /∈ ℘+(Ck) and Ck /∈ ℘+(Cj).

Let Ts be an assessment test (Ts ∈ �) and Cj a concept (Cj ∈ �). The indirect
downward evaluation function of a test on a concept, �I↓ : � × � → {0, 1}, can be
expressed as follows: �I↓(Ts, Cj) = 1 if there exist Ch ∈ � such that �D(Ts, Ch) = 1
and Cj ∈ ℘+(Ch), �I↓(Ts, Cj) = 0 otherwise.

Consequently, a test will indirectly evaluate downward all the concepts which
descend from the concepts evaluated directly in this test. For instance, test T3 of Fig. 1
evaluates indirectly downward the concepts C121, C122, C123, C1231 and C1232. Thus,
for a student taking T3, his/her knowledge level could be inferred simultaneously in
each one of these concepts.

Given Ts and Cj, the indirect upward evaluation function of a test on a concept can
be expressed by the function �I↑ : � × � → {0, 1}, �I↑(Ts, Cj) = 1 if exists Ch ∈ �

such that �D(Ts, Ch) = 1 and Ch ∈ ℘+(Cj), �I↑(Ts, Cj) = 0 otherwise.
A test will indirectly evaluate upward all the concepts which are ascendants of

those directly evaluated in the test. For example, test T3 of Fig. 1 indirectly evaluates
upward concept C1 and the whole course simultaneously.

Given Ts and Cj, these two functions can be generalized in the indirect evaluation
function of a test on a concept, �I : � × � → {0, 1}, �I(Ts, Cj) = �I↓(Ts, Cj) +
�I↑(Ts, Cj) Therefore, a test will indirectly evaluate a concept when this is done either
downward or upward.

All previous functions can be generalized in the evaluation function of a test on a
concept, � : � × � → {0, 1}, defined as �(Ts, Cj) = �D(Ts, Cj) + �I(Ts, Cj). Thus, a
test will evaluate a concept when this is done either directly, or indirectly upward or
indirectly downward.

Following the terminology of Wang and Chen (2004), our proposal allows us to
administer between-item multidimensional tests, i.e., tests where multiple concepts are
assessed simultaneously. This kind of multidimensionality is achieved when unidimen-
sional items assessing different concepts are administered in the same test. On the
other hand, there are IRT multidimensional models for within-item multidimensional
tests. In this kind of test, there are items whose ICCs are multidimensional. As will be
shown in Sect. 6, our proposal is able to approximate the behavior of these items.

The next section describes in detail how the diagnosis procedure is carried out with
our proposal. As mentioned before, when a test developer creates a test, he/she must
supply some information about how the diagnosis phases are going to be carried out.
He/she must configure: (a) Concepts directly evaluated; (b) the test evaluation mode
(its alternatives are described in Sect. 4.1); (c) how the student knowledge level is
inferred from his/her distributions (explained in Sect. 4.1.1); (d) item selection crite-
rion (approached in Sect. 4.2); (e) the procedure used to initialize the student model
(illustrated in Sect. 4.1.2); (f) when the test must finish (Sect. 4.3); and finally (g) the
number of knowledge levels used to grade examinees.
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4 Knowledge diagnosis procedure

From a general point of view, the algorithm for diagnosis is composed of the following
steps (Guzmán and Conejo 2004b):

1. Test item compilation: Given a test specification Ts, the item pool used �s (�s ⊆ �)
is equal to the union of all pools from those concepts involved in Ts. More specifi-
cally, an item Qi ∈ � belongs to �s when exists Cj (Cj ∈ �) such that E(Qi, Cj) = 1
and �(Ts, Cj) = 1.

2. Student cognitive model creation and initialization: If not constructed yet, the
diagnosis procedure creates and initializes a void instance of the student cogni-
tive model that contains nodes representing the student knowledge of concepts
involved in Ts. Our model provides several techniques which can be used to this
end. For instance, creating a normal distribution centered on the average knowl-
edge level, or generating a constant distribution. Test developers must decide
which mechanism will be used to initialize the student models. Note that, for each
node, the model keeps a discrete probability distribution.

3. Adaptive test administration: Finally, the student is administered the test.

This final stage is a generalization of the adaptive testing algorithm described in
Sect. 2.1. This generalization is illustrated in Fig. 2 and its phases are enumerated
below:

1. From set �s, the item which best contributes to the estimate of student knowl-
edge is chosen. This selection leads to a double choice process. Firstly, the concept
with the least accurate student current knowledge estimation is selected. Next,
from the set of items evaluating this concept, the most informative one is chosen,
i.e., the item which after being administered makes the most accurate knowledge
estimation. Probabilistic distributions of student knowledge are used to carry out
this selection procedure. When there is more than one most informative item, the
selection process is accomplished randomly.

2. The selected item is removed from the test pool and it is posed to the student.
3. In terms of student response pattern, his/her knowledge distributions in

corresponding concepts are updated according to the test assessment criterion.
4. The student knowledge level is inferred in the distribution updated in the previous

step.
5. Steps 1 to 4 are repeated until test finalization criterion is satisfied for all the

concepts involved in the test.

Fig. 2 Diagnosis model functioning diagram
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4.1 Student knowledge estimation

During test administration, the distribution of student knowledge is updated each time
he/she answers an item. This is usually done by using some variant of the bayesian
technique created by Owen (1969).

In our proposal, several assessment modes have been defined depending on the
concepts involved in the knowledge inference process. Consequently, in terms of the
scope of the diagnosis procedure, the following assessment modes can be defined:

– Aggregated assessment: It is used when the goal is only to infer the student knowl-
edge in those concepts directly evaluated in Ts, that is, those concepts Ct ∈ � such
that �D(Ts, Ct) = 1. Thus, once the student has answered the i-th item Qi, his/her
knowledge distributions are updated according to the following formula:

P(θt|u1, . . . , ui) =
⎧
⎨

⎩

‖P(θt|u1, . . . , ui−1)Pi(ui|θt)‖ if E(Qi, Ct) = 1∧
�D(Ts, Ct) = 1

P(θt|u1, . . . , ui−1) otherwise
(1)

where ui represents the answer selected for ith item, and θt his/her knowledge level
in concept Ct. CCC for this response pattern and for Ct is Pi(ui|θt). P(θt|u1, . . . , ui−1)

is the prior knowledge distribution in Ct, i.e., the distribution before he/she selected
the answer for item ith. Double vertical lines indicate that the result must be nor-
malized in order to ensure that the sum of all values is equal to one.
For example, considering again Fig. 1, if test T2 is administered under the aggre-
gated assessment model, the student model would be formed by just two distri-
butions: one for concept C3 (P(θ3|−→ui )), and the other for C4 (P(θ4|−→ui )), where−→ui = {u1, . . . , ui−1, ui} is the response pattern matrix.

– Complete assessment: This assessment mode permits student knowledge inference
in those concepts evaluated directly or indirectly downward. Once he/she answers
an item, this response is evidence about his/her knowledge not only in the concept
Ct directly evaluated in the test, but in those which are descendent from Ct. Thus,
evidence is propagated from Ct to the concepts in the path between Ct and the
concept Cr associated to the item (Cr ∈ ℘+(Ct)), both included. Generally, for this
assessment mode, the update process can be formally expressed as stated below:

P(θt|u1, . . . , ui) =

⎧
⎪⎪⎨

⎪⎪⎩

‖P(θt|u1, . . . , ui−1)Pi(ui|θt)‖ if E(Qi, Ct) = 1∧
�D(Ts, Ct)+
�I↓(Ts, Ct) = 1

P(θt|u1, . . . , ui−1) otherwise

(2)

Considering again Fig. 1, the student model for test T2 under the complete assess-
ment model would comprise the following six knowledge distributions: those of con-
cepts C3, C4, C31, C32, C311 and C312, i.e., P(θ3|−→ui ), P(θ4|−→ui ), P(θ31|−→ui ), P(θ32|−→ui ),
P(θ311|−→ui ) and P(θ312|−→ui ).

– Complete assessment with backpropagation: Analogously to the former assessment
mode, the student knowledge update can be extended to also affect the concepts
which are ancestors of those directly evaluated in the test. Accordingly, evidence
provided by the student item response is propagated not only to descendants, but
also to ancestors. That is, to all those concepts which are ancestors of the one directly
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evaluated in the test. Formally it can be expressed as follows:

P(θt|u1, . . . , ui) =
⎧
⎨

⎩

‖P(θt|u1, . . . , ui−1)Pi(ui|θt)‖ if E(Qi, Ct) = 1∧
�(Ts, Ct) = 1

P(θt|u1, . . . , ui−1) otherwise
(3)

If test T2 of Fig. 1 is in complete assessment mode with backpropagation, the
student model would comprise seven knowledge distributions: those for concepts
C3, C4, C31, C32, C311, C312 and the concept which represents the whole course, i.e.,
P(θ3|−→ui ), P(θ4|−→ui ), P(θ31|−→ui ), P(θ32|−→ui ), P(θ311|−→ui ), P(θ312|−→ui ) and P(θCourse|−→ui ).

This last assessment model is the most exhaustive, since it affects the great-
est number of concepts. Despite this advantage, it must be managed with caution,
because estimations are biased for the ancestors. When student knowledge is up-
dated in concepts evaluated indirectly downward, this task is carried out for all
concepts at the same level in the curricular hierarchy, because all of these concepts
are descendants of those directly evaluated in the test. Otherwise, when knowledge
distributions are updated in concepts evaluated indirectly upward, evidence is only
obtained from one branch of the conceptual tree; consequently, the information
inferred is partial and estimations might be biased.

This assessment mode can be useful as a starting point for a more accurate
estimation with a balanced content. For instance, let us suppose that our student
model is used in an ITS. Let us also consider the curricular structure of Fig. 1 and
assume that each concept has assigned a sufficient number of items to properly
accomplish the diagnosis of the student knowledge, i.e., each concept has more
items assigned than those depicted in the figure. If a tutor is teaching the student
in different concepts, once the instruction in, for example, concept C11 is finished,
our diagnosis proposal will proceed to update his/her student model in this concept
to help the instructional planner to obtain better learning strategies. Diagnosis of
C11 will be done by means of a test on this concept. If this test performs complete
assessment with backpropagation, this means that knowledge distributions in C1
and in the whole course will also be updated. At this point, the assessment of C1 and
the course might be partial. Later on, after instruction in C12, a test of this concept
will be administered to update the student model. This last test might be done under
complete assessment with backpropagation and using initial student knowledge
distributions for C1 and the course results obtained from the former test. As a
consequence, after the test of C12, estimation of C1 will not be partial. Therefore,
using the assessment model, it is not necessary to administer an additional test to
diagnose the student knowledge in C1. Furthermore, after administering tests on
concepts C2, C3, etc., the global estimate of the course becomes more accurate.

4.1.1 Estimated knowledge inference

Once the student knowledge distributions have been updated, his/her knowledge level
can be inferred using the two most popular techniques in adaptive testing, that is:

– Expectation a posteriori (EAP), where the value corresponding to the student
knowledge level is the expectation (or expected value) of probability distribution.
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Formally, it can be expressed as follows:

EAP(P(θt|−→un)) =
K−1∑

k=0

kP(θt = k|−→un) (4)

– Maximum a posteriori (MAP), when the value corresponding to the student knowl-
edge level is the one with the greatest probability, i.e., the mode of the distribution.
Formally, it can be expressed as shown below:

MAP(P(θt|−→un)) = max
0≤k<K

P(θt = k|−→un) (5)

Estimations will be used by adaptive item selection criteria to determine the next
item to be administered in the test; and by finalization criteria, to check if estimations
are accurate enough.

4.1.2 Initial knowledge estimation

At the beginning of the diagnosis procedure, before answering any item, knowledge
distributions must be initialized. If there is no additional information about the student
knowledge, our proposal takes constant distributions, where all knowledge levels have
the same probability.

When the model is used by an ITS, our system allows its initialization with a
numerical value for the student knowledge in a concept (provided by the ITS). From
this value, the system will discretize a normal probability distribution centered at this
value.

Finally, as mentioned before, if the student had previously done any test about this
concept, the system could use this result as a starting point for the diagnosis.

4.2 Item selection criteria

Unlike many adaptive testing-based models, our proposal is able to assess, in the same
test, more than one concept simultaneously. To this end, the item selection procedure is
carried out in two stages: concept selection and, from the items evaluating this concept,
the choice of the one which best contributes to achieving a more accurate student
knowledge estimation. Thus, the goal of adaptive item selection criteria is to minimize
the number of items required to accurately estimate the examinee knowledge.

Throughout this section, the adaptive selection criteria of our proposal are
described. Note that they are adaptations of standard methods (traditionally used
for single concept tests) to multiconceptual tests. They are applied in a different way,
in terms of the assessment mode used.

4.2.1 Maximum expected accuracy-based Bayesian method

This method is inspired by the proposal put forward by Owen (1975). He applied it to
single concept assessment using dichotomous items. In our proposal, this criterion is
extended to consider item selection in multiconceptual tests. Furthermore, this is an
extension adapted to our polytomous response model.

The goal is, as in its original definition, to select that item which minimizes the
expectation of the posterior student knowledge distribution variance. Let us suppose
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a student is doing a test which assesses a set ϕ of t concepts, ϕ = {C1, C2, . . . , Ct},
where ϕ ⊆ �. Let us also consider that he/she has answered previously i − 1 items,
and that −−→ui−1 = {u1, u2 . . . ui−1} is the student response pattern matrix. To calculate
which is the next Qj that must be posed in i-th position, for each item from the test
pool, the expectation of the posterior knowledge distribution variance is computed,
assuming that the selected item is Qj. At the end, the item selected is the one leading
to the least expectation value.

Formally, if we consider that each item has W + 1 choices {ui0,ui1, . . . , uiW}, the
item that must be administered next is the one that fulfills:

min
Qj∈�_

t∑

s=1

W∑

w=0

σ 2[ρw(θs|−−→ui−1, uj)]υjsw (6)

where

ρw(θs|−−→ui−1, uj) =
{

‖P(θs|−−→ui−1)Pjw(uw|θs)‖ if E(Qj, Cs) = 1

P(θs|−−→ui−1) otherwise
(7)

and

υjsw =
{

P(θs|−−→ui−1) · Pjw(uw|θs) if E(Qj, Cs) = 1

1 otherwise
(8)

�_ is the set of items from the pool (�_ ⊆ �) not administered yet and σ 2 the variance.
uj is the response pattern that the student might choose. P(θs|−−→ui−1) is his/her prior
knowledge distribution in Cs, i.e., before answering the new item; and ρw(θs|−−→ui−1, uj)

his/her posterior knowledge distribution in Cs (after administering the candidate item
Qj), assuming he/she will select the wth response pattern (uw). Finally, note that
υjsw, when item Qj evaluating Cs, is equal to the scalar product between the prior
knowledge distribution and the CCC of the w-ith response pattern.

In Owen’s original proposal (op.cit.), the set of response patterns were only 0
(incorrect) and 1 (incorrect). However, our method takes into account the different
response patterns the student could select. Likewise, this new reformulation considers
that the response is able to infer the student knowledge in more than one concept.

The test assessment mode will condition the set of concepts involved in the test,
and will therefore influence the test items. Consequently, in terms of the concepts
which belong to ϕ, three different modalities of this model can be defined:

a) Aggregated Bayesian selection, where test Ts evaluates directly t concepts, i.e.:

∀Cj, Cj ∈ ϕ ⇒ �D(Ts, Cj) = 1 (9)

b) Complete Bayesian selection, where t concepts are evaluated directly or indirectly
downward, that is:

∀Cj, Cj ∈ ϕ ⇒ �D(Ts, Cj) = 1 ∨ �I↓(Ts, Cj) = 1 (10)

c) Complete with backpropagation Bayesian selection, where the t concepts are those
evaluated, either directly or indirectly:

∀Cj, Cj ∈ ϕ ⇒ �(Ts, Cj) = 1 (11)
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4.2.2 Difficulty-based method

This method is an adaptation of the difficulty-based criterion of Owen (1975),
carried out for our proposal. It consists of turning it into a two phase method. In
the first phase, the concept with the least accurate knowledge estimation is selected,
and subsequently, the item whose difficulty is nearest to the student level in the con-
cept is chosen. Estimation accuracy is evaluated in terms of distribution variance. The
larger the variance, the larger the distribution dispersion. Formally, the procedure
accomplished by this selection mechanism can be expressed as stated below:

(1) Selection of concept Cs:
max
Cs∈ϕ

σ 2(P(θs|−−→ui−1)) (12)

(2) Selection of item Qj:

min
Qj∈�_

d(bj, N), ∃Cs, Cs ∈ ϕ, E(Qj, Cs) = 1 (13)

where
N = EAP(P(θs|−−→ui−1))

or
N = MAP(P(θs|−−→ui−1))

depending on the student knowledge level inference mechanism used in the test; and

d(a, b) = |a − b|
The item difficulty (bj) is one of the parameters which characterizes ICCs of dichot-
omous response models. Despite there being several definitions of this term, we will
assume the one provided by IRT. Difficulty is the knowledge level for which the
probability of answering an item correctly is the same as answering it incorrectly,
in addition to the guessing factor. That is, the knowledge level whose probability
is the ICC average value. Formally, it can be computed according to the following
expression:

bj = min
0<k<K

∣
∣
∣
∣ICCi(θ = k) − ICCi(θ = K − 1) − ICCi(θ = 0)

2

∣
∣
∣
∣ (14)

Observe that analogously to the former item selection method, this one has three
different modalities in terms of the test assessment mode:

a) Aggregated difficulty-based selection, if concepts of set ϕ satisfy the condition
expressed in 9;

b) Complete difficulty-based selection, when concepts fulfill condition 10;
c) Complete with backpropagation difficulty-based selection, in the case where they

satisfy the constraint 11.

4.2.3 Maximum information-based method

This technique is based on calculating the item whose information function is maxi-
mum for the current student knowledge level. This criterion is the most popular both
in dichotomous and polytomous models (Hontangas et al. 2000). One of the reasons
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for this popularity is that it is easy to use, since information functions can be computed
a priori for all the items. As a consequence, if all these functions are calculated before
starting the test, applying this criterion is only substituting the student knowledge
level in the item information function, and selecting the one with the highest result.

There are several information function-based criteria for polytomous items. In our
approach, we compute it following an adaption of the proposal by Dodd et al. (1995).
As in difficulty-based criterion, this method is unable by itself to make a content-
balanced item selection (in multiple concept tests). For this reason, this criterion must
be applied in two stages: Firstly, the concept Cs with the least student knowledge
estimation accuracy is selected. Secondly, the criterion selects the item evaluating this
concept, whose information function for student knowledge level in Cs has the highest
value.

In our approach, the definition of information function must be modified in order
to take into account that an item can assess more than one concept. Consequently, a
different information function is defined not only for an item, but also for the concept
it assesses. Formally, the selection process can be formulated as follows:

(1) Concept Cs selection:
max
Cs∈ϕ

σ 2(P(θs|−−→ui−1)) (15)

(2) Item Qj selection:
max

Qj∈�_
Ijs(θs) (16)

where θs is the value, according to the student current knowledge level estimation
in concept Cs; and where the function information Ijs(θs) of item j for Cs can be
computed in the following manner:

Ijs(θs) =

⎧
⎪⎨

⎪⎩

∑W
w=0

P′
jw(uw|θs)

2

Pjw(uw|θs)
if E(Qj, Cs) = 1

0 otherwise
(17)

being P′
jw(uw|θs) the derivative of the CCC corresponding to the response pattern uw

of Qj and Cs.
As in the remaining item selection criteria, in terms of the test assessment mode,

three different versions of this criterion can be defined:

a) Aggregated maximum information-based method, when concepts from set ϕ sat-
isfy the condition expressed in 9;

b) Complete maximum information-based method, when the condition indicated in
10 is fulfilled;

c) Complete with backpropagation maximum information-based method, when the
condition satisfied is 11.

4.3 Test finalization criteria

Finalization criteria determine when the item administration must finish. In adap-
tive testing, the most suitable finalization criterion is the one which ensures accurate
assessment employing the least number of items. In our proposal, we have defined two
adaptive criteria. In both of them student knowledge distributions are analyzed after
each response. The goal is to determine whether finalization conditions are satisfied
for all student probability distributions in concepts involved in the test.
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– Minimum Probability-based Criterion: It considers a test must finish when proba-
bility of the student knowledge level goes beyond a certain threshold. Formally, let
us consider an assessment test Ts of a certain course (Ts ∈ �), which evaluates a
set ϕ of t concepts ϕ = {C1, C2, . . . , Ct}. Let δ and −→ui also be the threshold and the
response pattern given to administered items, respectively. The constraint which
must be fulfilled can be expressed as shown below:

∀Cj, Cj ∈ ϕ, P(θj = MAP(P(θj|−→ui ))|−→ui ) > δ (18)

where MAP is inferred from Eq. 5. Observe that this criterion is satisfied when, for
all knowledge distributions, the maximum probability is greater than the threshold
δ.

– Estimation Accuracy-based Criterion: Its goal is to achieve knowledge estimations
with minimum variance. Note that analytically, the lesser the variance, the more
peaked the distribution is. Accordingly, for lesser variance values, there is one
knowledge level whose probability is considerably greater than the others. There-
fore, when knowledge distribution variance is lesser than a certain threshold, this
finalization criterion is met.
This method can be formally expressed in the following manner: Given Ts, the
constraint that must be fulfilled is the following:

∀Cj, Cj ∈ ϕ, σ 2(P(θj|−→ui )) < δ (19)

These two dynamic finalization criteria are convergent, i.e., ensure test finalization,
when item pools are constructed properly. Additionally, it is recommendable to com-
bine one of the former criterion with another static one such as:

– Maximum number of item criterion: It states the test must finish when the number
of posed items is greater than a certain threshold.

– Time limit criterion: It is based on determining a time limit to complete a test. When
this time limit is reached, finalization is forced.

The combination of a static criterion with a dynamic one provides a mechanism to
avoid item overexposure and it prevents tests from consuming a lot of time.

5 Item calibration

Characteristic curve calibration is an important issue when defining a response model.
To be able to administer adaptive tests, it is necessary to have a procedure available
for inferring these curve values. Without an efficient calibration algorithm, adaptive
tests are infeasible.

Calibration algorithms use information resulting from administering (non adap-
tively) tests to students with the items whose characteristic curves are not calibrated.
This means all students take a test which is the same size and has the same items.
Initially, they will be assessed with a heuristical assessment criterion, such as the
percentage of items successfully answered.

To calibrate non-parametric response models, regression methods are often used
(Habing 2001). Most of them are based on the following principle: given a set of
observations X and a function m, the set of observations next to one point x, should
contain information about the value of m in x. Accordingly, to estimate the value
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of m(x) it is possible to use some kind of weighted average of the data closest to x
(Simonoff 1996).

In keeping with this, one of the statistical techniques most frequently used because
of its simplicity is kernel smoothing (Härdle 1992; Wand and Jones 1995). Using kernel
smoothing to calibrate CCCs, the inference of each value is made by weighting the
neighboring values. These weighted values are computed using a density function with
a scale parameter. This value controls the influence of the neighboring values in the
estimation of a certain value. It depends on the number of prior test sessions used in
the calibration. The higher this number, the lower the value of scale parameter. The
function and the parameter are called kernel function and smoothing (or bandwidth)
parameter, respectively.

Ramsay (1991) is responsible for making this technique popular for IRT-based
response model calibration. He proposed a simple calibration technique (Junker and
Sijtsma 2001). In our proposal, taking this algorithm as a starting point, we have
made some modifications improving it (Guzmán and Conejo 2005b). After exhaus-
tive empirical studies, some stages of the original proposal have been modified. These
modifications lead to better results. This new version of the algorithm is applied
to calibrate the CCCs, for each item-concept pair. Consequently, the procedure for
calibrating the CCCs of all the items which assess a certain concept C has the following
steps:

1. Prior student session compilation: From all test sessions available, those involving
the concept C are collected. The information for these sessions required for cal-
ibration is the answer that each student selected per item. Information from any
other item not involving concept C is purged.

2. Score computation: For each student, his/her score is computed. This is done heu-
ristically, since it is useful just for ordering the students’ performance in the test.
For instance, one of the ways of doing this is by calculating the percentage of
items successfully answered.

3. Score transformation: The percentage obtained in the former phase is transformed
into a temporary estimation of the student knowledge level. It is done by calculat-
ing the corresponding quartile in a standard normal distribution. After that, this
value undergoes a linear transformation on the discrete scale used to represent
the knowledge level.

4. Smoothing Application: Let N be the number of test sessions, the CCC of choice
uj from item i is computed as follows:

∀k, k ∈ {0, 1, 2, . . . , K − 2, K − 1}, Pij(uj|θ = k) =
N∑

a=1

wakuija (20)

where uija = 1 indicates that a-th student selected the option uj for item i.
Otherwise, uija = 0. Furthermore, each weight wak is calculated as shown be-
low:

wak = κ(
θa−θk

h )
∑N

b=1 κ(
θb−θk

h )
(21)

where θa is the ath student knowledge level calculated in the former step, θk the
knowledge level whose probability is being computed, κ the kernel function and
h the smoothing parameter. The underlying idea about the value of h is to mini-
mize the mean square error of estimation (Douglas and Cohen 2001). There are
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a lot of studies about the most suitable value for the smoothing parameter (e.g.,
Ramsay 1991). According to (Guzmán 2005), for this proposal, the best value for
h is around 0.8.
Regarding the kernel function, Ramsay (1991) proposes three alternatives: (a)
Gaussian function: κ(x) = e−x2/2. (b) Uniform function: κ(x) = 1. (c) Quadratic
function: κ(x) = 1 − x2. In our proposal, after several empirical studies, we have
found the best results are provided by the first one (Guzmán 2005).

5. Students’ knowledge level inference: Using recently calibrated CCCs, the
students’ knowledge level is inferred. For this purpose, a maximum likelihood-
based
approach is used:

P(θ |−→un) =
n∏

i=1

Pi(ui|θ) (22)

Once this procedure is applied, a knowledge distribution is obtained. The student
knowledge level is inferred using MAP.

Example Let us assume that we want to calibrate an item i with three choices, where
the correct one is the first. To simplify, let us also consider that five students have
taken a conventional test (fixed number of items and evaluation expressed by means
of percentage of success).

Let us assume a knowledge level scale with three knowledge levels, i.e., 0, 1 and
2. Students have been numbered with identifiers from 1 to 5. Student 1 gets 55%
successful in the test, student 2 45%, and the other students: 25%, 80% and 10%,
respectively. We also have the following information: students 1 and 4 selected the
first choice (the correct one), student 2 the second one, student 3 the third, and finally,
student 5 left the item blank (i.e., selected a fourth virtual choice).

Table 1 collects the results of the first three steps of the calibration algorithm. The
first column contains the student identifier. Students have been ordered according to
their performance in the test (represented in the second column). The third column
contains the quartile corresponding to the score in a standard normal distribution.
Finally, the last column shows the result of applying a linear transformation from the
continuous knowledge level scale (i.e., [−2.5, +2.5]) to the discrete scale used in the
example (i.e., {0, 1, 2}). Note that although we use a discrete scale in this step, the value
obtained is not discretized.

Table 2 shows the different steps followed to compute the weights used to infer
the CCCs. The first group of three columns (labeled with �θ/h) shows the difference
between the knowledge level of the corresponding student (i.e., the value in the fourth
column of Table 1) and the knowledge level indicated by the column (0 for the first

Table 1 Results of the
different steps of the
calibration algorithm for the
example data (I part)

Student Score (%) Quartile Knowledge
id level

5 10 −0.967 0.601
3 25 −0.430 0.811
2 45 1.01E-07 0.980
1 55 0.430 1.149
4 80 0.967 1.359
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Table 2 Results of the different steps of the calibration algorithm for the example data (II part)

Student id �θ/h κ(�θ/h) Weight

0 1 2 0 1 2 0 1 2

5 0.751 −0.498 −1.748 0.754 0.883 0.216 0.312 0.186 0.094
3 1.014 −0.235 −1.485 0.597 0.972 0.331 0.247 0.205 0.145
2 1.225 −0.024 −1.274 0.471 0.999 0.443 0.195 0.210 0.194
1 1.436 0.186 −1.063 0.356 0.982 0.567 0.147 0.207 0.248
4 1.699 0.449 −0.800 0.235 0.903 0.725 0.097 0.190 0.317

2.415 4.742 2.286

Table 3 Calibrated CCCs for
the item of the example

Choice Knowledge levels

0 1 2

1 0.245 0.397 0.565
2 0.195 0.210 0.194
3 0.247 0.205 0.145
4 0.312 0.186 0.094

column and so on), divided by the smoothing parameter (assumed 0.8 for this exam-
ple). The second group of three columns (labeled with κ(�θ/h)) shows the result of
applying the kernel function (for this example, the Gaussian function). The values in
the last row values are the sum of the values for all students. Finally, the last group
of three columns (labeled ‘weight’) shows the weights which will be used to compute
the CCCs. Weights have been computed by dividing the corresponding value in the
second group of columns by the sum of all the values of the column. For example, the
weight for student 5 (first row) for knowledge level 0, has been computed as follows:
0.754/2.415 = 0.312.

Finally, Table 3 shows the calibrated CCCs. Each row contains the values of the
characteristic curve of one of the choices of the item. Note that, as we mentioned
before, the first choice is the correct one. The final row corresponds to the don’t know
virtual choice. Each value of this table has been computed according to equation 20.
Remember that in equation 20 uija = 1 when student a selected choice j of item i. For
instance, the first value of the first row (Pi1(u1|θ = 0)), has been calculated as follows:
Two students (1 and 4) selected choice 1. As a result, the value of Pi1(u1|θ = 0) is
equal to the sum of the weights w10 and w40, that is, 0.147 + 0.097 = 0.245.

The estimated knowledge levels obtained in the fifth step of the algorithm can be
used as feedback to recalibrate the CCCs. Accordingly, the former procedure would
be repeated from the smoothing application step, until the values of the student knowl-
edge levels and the CCCs values remain unchanged. To gauge the change between
iterations, the mean square error between each CCC and its former estimation is used.
A threshold is also used to determine when calibration must finish. If the sum of all
errors is below this threshold (whose value is usually 0.0001), the calibration process
stops. This procedure must be repeated for all the concepts of the curriculum. Once
all of the CCCs have been calibrated, any time they are used (now in adaptive tests),
they can be updated with these new test session results. As a result, this process could
be repeated, automatically or on demand, getting more accurate estimations of the
characteristic curves.



Adaptive testing for hierarchical student models

6 Evaluation

According to Scriven (1967), system or model evaluation can be conducted in two
different ways, namely, formative or summative. In the first case, systems under devel-
opment are studied to identify potential problems and to orient the modifications.
This kind of evaluation makes sense during the design of a project or during the initial
development stages. The goal is to improve the design of a system and/or its behavior.

Summative evaluation is conducted to question the construction, behavior or out-
puts of a certain system or proposal. Its challenge is to prove the adequacy of applied
formalisms and techniques. Formal experiments are mainly used in summative eval-
uations, where the goals are to evaluate the effectiveness of a whole system (Twidale
1993).

We have conducted several empirical studies to make a summative evaluation
of our proposal. All these experiments can be grouped in two sets. In the first one
(Sects. 6.1, 6.2 and 6.3), curricular structure is composed by a single concept and sim-
ulated students are used. Some preliminary aspects are studied in such a simplified
setting. First (Sect. 6.1) we have studied which is the best item selection criterion
according to our model. This study is necessary, since the best criterion is used in the
rest of the experiments. Next (Sect. 6.2), our discrete proposal is compared to the
classical 3PL approach in terms of accuracy, number of items required for diagnosis
and computational cost. An important part of our proposal is the calibration algo-
rithm, since it is essential to make the knowledge engineering effort feasible. In the
corresponding experiment (Sect. 6.3) we will try to quantify the performance of our
algorithm.

The second set of experiments is more directly related to our proposal for hierarchi-
cal student modeling. First (Sect. 6.4) we compare an assumed ‘accurate’
bidimensional IRT-based model and a ‘simplified’ hierarchical model. The comparison
is made in terms of the predictive power of each model, i.e., the capability of predict-
ing student’s success rate in a test. After that, in Sects. 6.5 and 6.6 we compare the
performance of a one-dimensional IRT-based model and a hierarchical model. Note
that this last study will be carried out using both simulated bidimensional students
(Sect. 6.5) and real students (Sect. 6.6).

Our simulated students are software artifacts which try to emulate the behavior of
real students when being administered tests. The use of simulated students is one of the
strategies proposed by Murray (1993) for intelligent system evaluation and has been
adopted by many researchers in the field (e.g. (VanLehn et al. 1998; Millán and Pérez
de la Cruz 2002)). In our work, a simulated student will be described by its knowledge
levels. Each student is generated with a prior knowledge level per leaf concept, which
we call ‘real’ knowledge level in this concept. Note that this ‘real’ knowledge level is
what adaptive tests will diagnose. These generated values follow normal distributions
according to the knowledge level scale considered in the corresponding experiment.

On the other hand, it is necessary to generate items and tests whose administration
will be also simulated. For each item, its ICC is generated following a three parameter
logistic (3PL) function (Birnbaum 1968). This function is often used to model ICC in
IRT, and particularly by student modeling researchers who apply IRT-based adaptive
testing techniques (e.g. (Huang 1996; Millán and Pérez de la Cruz 2002)):

ICC(θ) = c + (1 − c)
1

1 + e−1.7a(θ−b)
(23)
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Their parameters have the following meaning:

– Discrimination (a): This value is proportional to the slope of the curve. The greater
the value, the higher the capability of the item will be to discern between students
with higher knowledge levels and student with lower levels.

– Difficulty (b): It corresponds to the knowledge level at which the probability of
answering correctly is the same as answering incorrectly, in addition to the guessing
factor. The range of values allowed for this parameter is the same as the one allowed
for the knowledge levels.

– Guessing (c): It is the student probability of answering the item correctly (by choos-
ing a response randomly), when he/she has no knowledge at all.

These three values have been employed in simulations to make available pools where
items have different features. They are also simulation input parameters. Once the
ICC is determined, the CCC of correct choice is matched with the ICC. The char-
acteristic curves of the other (incorrect) choices, are generated, for each knowledge
level θ , according to the formula below:

Pi(
−→uij |θ) = cj

1 + e−1,7aj(θ−bj)
(24)

Values of parameters aj, bj and cj, for jth choice are generated following normal
distributions. These distributions are very similar to those used for ICC parameter
generation. Note that in Eq. 24, discrimination (aj) always takes negative values to
ensure curves decrease monotonically.

The last curve models the blank answer and must be computed from the other
CCCs. An item is itself a probabilistic space. This means that the sum of all CCCs
must be equal to a vector of ones, and therefore this last curve is computed by sub-
tracting from a vector of ones the sum of all incorrect CCCs and the correct CCC. If
any value of the last curve is negative, then the curves are discarded and generated
again. This procedure of generating CCCs leads to curves similar to those modeled
by Thissen and Steinberg (1997).

The above process describes the generation of the characteristic curves of an item
for the concept that it evaluates directly. CCCs for concepts evaluated indirectly are
obtained after a calibration process, as will be explained later.

After generating an item pool, a test is constructed according to the values of
certain parameters that indicate item selection criterion, assessment method, final-
ization criterion and its thresholds. In addition, concepts involved in the test must be
specified.

When using the hierarchical model, the knowledge level of non leaf concepts must
be inferred. To this end, a conventional test is administered to a simulated student
(i.e., all items are administered to the student and his/her performance is measured by
means of the percentage of success), using all the items which evaluate (either directly
or indirectly) the corresponding concept. Student behavior in this test is determined
by his/her ‘real’ knowledge level in the descendent leaf concepts. This procedure
is repeated for the immediate upper hierarchy level until his/her ‘real’ knowledge
had been inferred in all the concepts. For example, if we consider the curriculum
of Fig. 1 initially the student knowledge is generated randomly for concepts: C11,
C121, C122, C1231, C1232, C311, C312, C32 and C4. Once this step has been completed,
knowledge in concept C123 will be computed administering a test of all items associ-
ated to concepts C1231 and C1232. After this, knowledge in C12 is calculated from items
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associated to concepts C121, C122 and C123. This process is repeated to infer the knowl-
edge level in the upper level concepts of the hierarchy. As a collateral effect, CCCs
of items for concepts evaluated indirectly are also inferred during the calibration
process.

Student behavior during a test is determined by means of their ‘real’ knowledge
level and by the CCC values. Accordingly, when a student a is administered an item
Qi with W + 1 choices {−→ui0,−→ui1, . . . , −→uiW}, the answer he/she selects is determined as
follows. First of all, his/her ‘real’ knowledge level (θ r

aj) in the concept (Cj) the item Qi

assesses directly is obtained. Next, a random value between 0 and 1 is generated (v).
After that, the answer selected (s) in the one which fulfills the condition below:

min
0≤s≤W

s∑

w=0

Pi(
−→uiw|θj = θ r

aj) ≥ v (25)

where Pi(
−→uiw|θj = θ r

aj) is the probability value of the wth CCC of item Qi for the
knowledge level θ r

aj.

6.1 Study on diagnosis accuracy and efficiency

In our proposal we have extended some item selection criteria, usually applied to
dichotomous IRT-based models to polytomous ones. For this reason, the challenge
of this study was to compare these new polytomous item selection criteria in order
to determine, under our model, which one is the most efficient. This comparison was
made in terms of the number of items required for student diagnosis and the per-
centage of students whose knowledge was inferred correctly. In all these experiments
curriculum was composed of one single concept.

6.1.1 Experiment 1: Comparison between bayesian and information function-based
selection criteria in terms of item properties

In this experiment a sample of 100 simulated examinees were administered a test.
The pool was composed of 300 items. The test assessed students in 12 knowledge lev-
els. The ‘real’ students’ knowledge level was generated randomly according a normal
distribution centered in 5 (average value of knowledge level scale). The test final-
ization method was based on maximum expected accuracy, where the threshold was
set at 0.001. The knowledge level inference process was carried out applying MAP
criterion. Constant student knowledge distributions were assumed at the beginning of
the test.

6.1.2 Results

Table 4 shows the results corresponding to different simulations. The first two columns
are discrimination and guessing values used for characteristic curve generation. When
a numerical value is shown, this means that all curves were generated with this value.
When the word “unif.” is shown, this means that guessing was generated randomly
according to a normal distribution centered in 0.5. Difficulty was generated randomly
according to a normal distribution whose center is the central value of the knowledge
level scale, i.e., five.
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Results illustrate that, for both criteria, diagnosis is highly accurate (the knowl-
edge level was inferred correctly for at least 90% of individuals). The best criterion
in terms of the item required for diagnosis is the bayesian. Observe that the greater
the guessing, the higher the number of items needed. Additionally, the greater the
discrimination, the lower that number will be.

6.1.3 Experiment 2: Comparison between Bayesian and difficulty-based criteria
in terms of test accuracy

The previous experiment revealed Bayesian selection criterion is better than infor-
mation function-based. In this second experiment, our Bayesian polytomous criterion
was compared to the polytomous difficulty-based. According to their author (Owen
1969), both methods are very similar in their original dichotomous forms. In fact,
the difficulty-based one is computationally more efficient than the Bayesian, but its
performance is lower. The objective of this experiment is to quantify the differences
in performance of both methods after being extended for our proposal.

Simulation conditions were analogous to those used in the former experiment. The
difference rested on characteristic curve parameters. Guessing always took a zero
value and discrimination was randomly generated according a normal distribution
centered at 1.2. We use normal distributions centered at this value because a study of
Kingsbury and Weiss (1979) demonstrates that, in an item pool, the mean discrimi-
nation factor is around 1.2. Difficulty was generated in the same way as in the former
experiment.

6.1.4 Results

Table 5 shows the results obtained from the different simulations. Several simulations
have been done in terms of the test finalization threshold (table first column). The
third and fourth columns contain the average number of items administered per indi-
vidual, and the fifth and sixth the percentage of examinees successfully diagnosed.
Rows labelled with “std.dev.” contain the standard deviation of the value placed in
the previous row.

These results suggest bayesian criterion behaves better than difficulty-based. In
addition, as can be seen, the minimum number of items required to achieve a good

Table 5 Comparison between Bayesian and difficulty-based selection criteria in terms of test accuracy

Threshold Num. of items administered Correct diagnoses

Bayesian Difficulty-Based Bayesian (%) Difficulty-based (%)

0.1 1.44 3.34 39 45
std.dev. 0.21 0.10 7 5

0.01 4.74 9.09 98 98
std.dev. 0.17 0.36 1 2

0.001 8.79 14.01 99 99
std.dev. 0.24 0.63 1 0.9

0.0001 14.50 18.13 100 99
std.dev. 1.10 1.44 0 0.3

0.00001 20.87 22.51 100 100
std.dev. 2.29 1.63 0 0
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percentage of individuals correctly diagnosed (i.e., 99%) is only about nine items with
the best item selection criterion.

6.2 Comparison versus 3PL continuous model

This set of experiments compares our proposal with the classical 3PL response model,
i.e., the 3PL continuous model. For this reason, we consider again a curriculum com-
posed of a single concept.

6.2.1 Experiment 1: Comparison in terms of number of items per test and diagnosis
accuracy

In this analysis, 100 simulated students were administered an adaptive test whose
items where extracted from a pool of 300 items. The goal was to diagnose the stu-
dents’ knowledge in a single concept using a scale of 12 knowledge levels. Each
student was designated a ‘real’ knowledge level generated randomly from a normal
distribution centered in 5 (i.e., the average value of knowledge level scale).

All items had three choices. Their characteristic curves were generated using nor-
mal distributions centered at the following values: 0 for the guessing factor, 1.2 for the
discrimination factor and 5 for the difficulty.

Two different tests were administered. Student knowledge initial distributions were
assumed constant. Both of them used the bayesian selection criteria and the test final-
ization method was based on maximum expected accuracy, where the threshold varied
as will be seen in the results. The first test used our discrete and polytomous model
and the second one the classical dichotomous, continuous and 3PL-based approach
for administering adaptive tests.

6.2.2 Results

Table 6 shows the results of several simulations carried out varying the threshold of the
test finalization criterion. As can be seen, the number of items is very similar (some-
times even less for our proposal) for lower thresholds. The most significant difference
corresponds to a value of 0.00001. This can be easily explained since discretization
entails a loss of precision and, as expected, the lesser the threshold, the greater the
item number required for diagnosis with our proposal. However, diagnosis accuracy
is considerably good (99.92%) with a mean of only 5.74 items per test.

6.2.3 Experiment 2: Comparison in terms of computing time

This study compares our proposal with the classical 3PL response model in terms of
computing time. To this end, the time spent on item selection, knowledge update and
finalization criterion checking was measured for both proposals. A computer with a
2 GHz Intel Pentium IV processor was used to carry out the simulations.

Hundred simulated students were administered a test with a pool of 300 items.
Students’ knowledge was measured on a scale of 12 levels. Student knowledge initial
distributions were constant. Characteristic curve parameters were generated accord-
ing to normal distributions centered at 1.2 (discrimination), 5 (difficulty) and 0.25
(guessing).
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Table 6 Number of items and percentage of success diagnosing student knowledge

Threshold Num. of Standard Students Standard
items deviation correctly deviation
administered diagnosed

0.1 discr. 1.73 0.22 99.13 0.20
cont. 2.40 0.05 98.79 0.06

0.01 discr. 5.74 0.20 99.92 0.03
cont. 6.08 0.08 99.08 0.03

0.001 discr. 9.20 0.10 99.99 0.01
cont. 9.37 0.24 99.04 0.06

0.0001 discr. 14.41 2.03 100.00 0.00
cont. 13.05 0.26 99.45 0.03

0.00001 discr. 20.01 5.44 100.00 0.00
cont. 17.29 3.04 99.98 0.03

Table 7 Computing time of item selection, knowledge update and finalization criterion checking in
milliseconds

Number of Continuous Discrete
knowl.levels

Item Student Finaliz. Item Student Finaliz.
selection knowledge criterion selection knowledge criterion

update checking update cheking

2 time 371.71 0.20 0.88 4.73 0.04 0.17
std.dev. 4.59 0.02 0.07 0.07 0.007 0.01

3 time 386.51 0.21 0.78 4.80 0.03 0.18
std.dev. 4.91 0.01 0.04 0.05 0.004 0.006

6 time 379.02 0.21 0.69 5.14 0.02 0.19
std.dev. 12.33 0.007 0.01 0.11 0.001 0.008

12 time 380.23 0.20 0.63 5.69 0.2 0.19
std.dev. 9.39 0.002 0.01 0.17 0.001 0.008

24 time 382.89 0.19 0.61 6.62 0.02 0.27
std.dev. 6.2 0.001 0.009 0.34 0.001 0.02

48 time 377.18 0.19 0.60 8.20 0.023 0.31
std.dev. 4.48 0.0009 0.006 0.001 0.001 0.01

100 time 383.76 0.19 0.61 13.13 0.024 0.38
std.dev. 3.08 0.001 0.007 1.58 0.0009 0.02

6.2.4 Results

Several simulations were made modifying the knowledge level scale (for our dis-
crete proposal). Tests were administered using estimation accuracy-based finalization
criterion (with a threshold of 0.001) and the bayesian item selection method. The
knowledge level inference mechanism was MAP.

As can be seen in Table 7, time required for item selection was always notably
higher when 3PL was used. In fact, our proposal reduced this time by about 97%.
Note this reduction was not particularly sensitive to the number of knowledge lev-
els used to diagnose the students’ knowledge state. On the other hand, even though
updates and finalization checking required less time with our proposal, in these cases,
differences were not so significant.
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These results are important in terms of scalability. Our goal is to implement this
proposal in a web-based testing system. This system must be able to assess simulta-
neously hundreds (or even thousands) of students. In these situations, it is vital to
provide a good performance avoiding delays which might cause students to become
stressed. Thus, the computational efficiency has been one of the reasons for choosing
a discrete approach.

6.3 Calibration algorithm performance

The goal of this experiment was to study the calibration algorithm behavior. In order
to verify its accuracy, different size simulated student samples were used to calibrate
a set of items. Their behavior in (non adaptive) tests was determined by means of
their ‘real’ knowledge level and by the real CCCs. Once students took tests, items
were calibrated, and accordingly their CCCs were inferred. Goodness of fit was mea-
sured in terms of mean square error. To validate these results, adaptive tests were
administered to a new student sample using the learnt CCCs.

50 items were calibrated, each one of them with three choices and another one
for the don’t know answer. This means that a total of 200 CCCs were calibrated. The
knowledge level scale was set to six. Real CCCs were generated using 3PL where
parameters were generated randomly following normal distributions. The one for
discrimination was centered at 1.2, difficulty at 2 and guessing at 0.15.

After calibration, adaptive tests were administered to a new sample of 100 students.
Student knowledge initial distributions at the beginning of this test were constant. The
item pool of these tests was only made up of the 50 calibrated items. In these tests,
bayesian and estimation accuracy-based criteria were used for item selection and test
finalization, respectively. The finalization threshold was 0.001 and the knowledge level
inference mechanism was MAP.

6.3.1 Results

Table 8 collects the results of simulations done with different student sample sizes
(first column). The second one is the number of students (from the calibration sam-
ple) whose knowledge was correctly inferred at the end of the learning process. The
third column contains the number of students from the calibration sample whose
knowledge was incorrectly inferred with an error of just one knowledge level (±1).
The fourth column includes the sum of mean square errors of all CCCs. Finally, the last
column is the percentage of students from the validation sample whose knowledge
was correctly inferred by means of adaptive tests using calibrated CCCs.

The results suggest that even with a reduced sample of just 20 students, posterior
diagnosis is acceptably accurate (around 90% of individuals correctly diagnosed).
Note that in this posterior diagnosis, the remaining 10% of students were diagnosed
with an error of ±1. As a consequence, by this algorithm with a reduced sample it is
feasible to calibrate items and then administer adaptive tests.

6.4 Comparison between muldimensional IRT modeling versus the hierarchical
approach

In this study we evaluate what happens when items are normally multidimensional,
i.e., they depend on two or more latent trait (or concepts). We will assume a curric-
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Table 8 Calibration algorithm performance

Number Students % of students Students MSE Posterior
of correctly correctly wrong diagnosis correct
students diagnosed diagnosed by one level diagnosis (%)

20 14 70 6 19.62 95
50 42 84 8 15.37 98
100 89 89 11 13.23 98
300 236 78 64 12.65 95
500 424 84 76 11.63 99
1000 884 88 116 11.37 99
5000 4895 97 105 10.01 100
10000 9646 96 354 9.33 100

ulum structured into three concepts: one root C and two children C1 and C2. A set
of 100 multidimensional items has been generated. We assumed that the response for
each item depends on the knowledge of both children concepts and to this end item
characteristic curves were generated following a multidimensional IRT model based
on an extension of 3PL (Segall 1996). This model requires two discrimination factors
(one per dimension), two difficulties and a guessing parameter for each item. These
parameters were randomly generated according to normal distributions centered at
1.2 (discriminations), 2 (difficulties) and 0.25 (guessing factors). In this experiment,
we considered a scale of 6 knowledge levels. To simplify, we assumed dichotomous
items, i.e., items were only evaluated as either correct or incorrect. Once the item pool
was constructed, we generated a set of 1000 simulated students, each of them with
two ‘real’ knowledge levels θ1 and θ2 about C1 and C2, respectively.

The set of 1000 simulated students was administered all the items of the pool.
The behavior of each student was determined according to Eq. 25 using the multidi-
mensional item characteristic curves. Consequently, for each student a we obtained a
vector of response patterns

→
ua and a success rate S 0

a (i.e., number of items successfully
answered over the total number of items).

The experiment tries to compute how good the estimation of the success rate is,
when using not a truly bidimensional IRT description for each student, but a hier-
archical description, assuming each item depends either on C1 or on C2. An initial
control experiment was conducted by assigning items randomly to C1 or C2. The
objective of this division was to study what happens if we simply ignore the multi-
dimensional intrinsic behavior of the items without any source of information. By
using the response patterns

→
ua previously obtained, we calibrated the items with the

algorithm of Sect. 5, assuming that each item evaluated directly either C1 or C2. Once
items were calibrated, a new test session was simulated using the same students previ-
ously generated with their known C1 and C2 values but simulating their answers to the
items according to the corresponding unidimensional characteristic curves obtained
from calibration. In this way a new set of success rates S1

a was obtained. Finally, we
compared both sets of success rates and computed their correlation. The correlation
coefficient was low: within the interval (−0.065, 0.058) with P = 0.05.

Then a more interesting experiment was performed. Instead of assigning items
randomly to C1 or to C2, the partition was done in terms of the discrimination factor
of multidimensional characteristic curves. Consequently, for each item if discrimina-
tion for dimension C1 was greater than discrimination for dimension C2, such item
was assigned to concept C1 and vice versa. After this redistribution, we calibrated
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the items again and simulate a new test to obtain a new set S2
a of success rates. The

correlation between the ‘real’ set S0
a and S2

a was very high: in the interval (0.966, 0.973)

with P = 0.05.
We can conclude that when items are actually multidimensional, a suitable hierar-

chical structuring of knowledge can be used that accurately reflects student behavior.
On the other hand, if the partition of items is done at random, there is no correlation
between predicted and ‘real’ behavior.

6.5 Comparison between 2-unidimensional IRT modeling versus the hierarchical
approach

In this experiment, we assume that items are intrinsically unidimensional, but they
alternatively depend on one or the other of the children concepts. The goal of this
study is to establish whether in this case a hierarchical organization of concepts and
items provides any advantage compared to considering all the items being assigned
to a single root concept.

To this end, let us consider a curriculum like the one described in the former exper-
iment (i.e., the three concepts C, C1 and C2). We will also use 1000 simulated students,
whose knowledge level is generated randomly for concepts C1 and C2 between 0 and
5 (i.e., a knowledge scale of 6 levels). Once the students were generated, a pool of
200 items was constructed, 100 were assigned to concept C1 and the others to concept
C2. All the items had three choices (only one of which was correct) and they allowed
the (virtual) blank choice. Their CCCs were generated as explained at the beginning
of Sect. 6. Parameters assumed for CCCs of correct choices were based on normal
distributions centered at 1.2 (discrimination), 2 (difficulty) and 0.25 (guessing).

After generating students and items, students were administered all the items,
obtaining their response patterns and success rates for concept C1 and concept C2.
The sum of these two results is the success rate S 0

a for C.
Using these data, items were calibrated with our algorithm in two situations. First

(situation a), we applied the algorithm assuming that items evaluated directly either
concept C1 or concept C2. We simulated a test session, using the newly calibrated
curves and considering the same student knowledge levels to predict their responses.
After this, we computed the success rate predicted for each student S1

a, and compared
it to the ratio initially generated. The correlation was within the interval (0.955, 0.965)

with P = 0.05. This is the benchmark to which the following result must be compared.
Then (situation b), all items were assumed to evaluate directly concept C. Again the

calibration algorithm was applied, a session was simulated with the calibrated curves
and a new set of success rates S2

a was computed. The correlation was now within the
interval (0.880, 0.905) with P = 0.05.

We may conclude that when the items are intrinsically unidimensional, but they
alternatively depend on one or the other of the children concepts, the consideration
of a single dimension predicts student behavior, although some predictive power is
lost.

Another experiment could be carried out, considering the case of truly unidimen-
sional items. Obviously if this is the case, the results of considering that the items
are split into two item groups would be exactly the same as considering a single root
concept, because there is a single latent trait.
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6.6 Experiments with real students

The latter experiment was also carried out for two different real student populations.
Data were collected in both cases through a web-based assessment tool, the SIETTE
system (Conejo et al. 2004; Guzmán and Conejo 2005a). Items were evaluated as
either ‘correct’ or ‘incorrect’ (this is equivalent to a polytomous approach where all
items have only two choices.) Curriculum structure in both experiments was the same,
i.e., a root concept C with two children concepts C1 and C2.

In this case, we did not know for sure if the items were intrinsically unidimensional
or bidimensional, but they were assigned by the test developers to one of the leaf
concepts in the three concept hierarchy. The previous experiments showed that in any
case, considering two unidimensional leaf concepts will give better predictions than
using a single root concept. We are empirically testing that this is also the case with
real student data.

The first experiment was conducted using data from students studying Botany in
the Polytechnic University of Madrid (Spain). In this experiment, the root concept was
the global knowledge about Botany, whereas concepts C1 and C2 were Angiospermae
and Gymnospermae, respectively. A conventional test (i.e., all items were posed to all
students and their performance was measured in terms of ratio success) with a total
of 20 items was administered. The test developer considered that 7 of those items
evaluated directly the Angiospermae concept and the others the Gymnospermae.

A total of 172 students took this test. From these evidences we carried out the cal-
ibration in the same manner as in the former experiment. That is, first all items were
calibrated taking into account the knowledge structuring done by the test developer
(note that this is what we called situation a in the former experiment). Thus, items of
concept C1 were calibrated from the success ratio in such concept and the same for
the items of concept C2. Once the calibration was done, by using the results of this
process (i.e., the calibrated CCCs and the student’s knowledge level in each children
concept), we tried to predict students’ answer in the items of the test. For this purpose,
we considered the student population as a group of simulated individuals and predict
their answer accordingly. As a result, we obtained the success rate. This information
was compared to the original success ratio and the correlation index was computed:
it is within the interval (0.59, 0.75) with P = 0.05.

The same was done for situation b. That is, we calibrated the items considering
that all of them were assigned to concept C. After that, we predicted the behavior of
students and also calculated the correlation index: it is within the interval (0.62, 0.77)

with P = 0.05.
It can be seen that the single concept model and the hierarchical model give similar

results. There is no improvement by using the proposed hierarchical model, but at
least, there is no significant loss of information.

This experiment was repeated using other real input data. We collected information
on students who took a test of a LISP course. It was structured into a root concept
with two children: Functions (C1) and Environments and Iteration (C2). A total of
93 students of Computer Science Engineering at the University of Málaga (Spain)
were administered a conventional test of 12 items. The test developer of this course
considered that 6 of these items evaluated directly concept C1 and the other concept
C2. The same procedure was applied to these data. The results we obtained are the
following. The correlation index for situation a was within the interval (0.76, 0.89) with
P = 0.05, and for situation b it was within the interval (0.62, 0.82) with P = 0.05.
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In this case, the results indicate that the hierarchical structure behaves better than
considering just a single concept.

Unfortunately the results of the experiments with real students are not statistically
significant at 95% confidence level due to the number of students involved, but at
least they do not contradict experiments carried out with simulated students.

7 Related work

There are many systems which use testing for student knowledge inference. Most of
them (e.g. DCG (Vassileva 1997), ELM-ART (Weber and Brusilovsky 2001) or Ac-
tiveMath (Melis et al. 2001)) use heuristic-based testing approaches. These heuristics
can sometimes yield not completely reliable student models. On the contrary, there
are other proposals which use IRT-based adaptive testing. Some of them use this kind
of test just as it is, such as Lilley et al. (2004). Other approaches have tried to solve
the problems of these tests for student modeling. For instance, the CBAT-2 algorithm
(it stands for Content-Balanced Adaptive Testing) (Huang 1996) applies a mechanism
which guarantees content-balanced selection in multiconceptual tests. Teachers must
manually indicate the percentage of items which must be posed per concept. As a
consequence, this strategy can lead to estimations which are not entirely accurate. Its
response model is based on a dichotomous approach which uses the 3PL function for
ICC modeling.

Bayesian Adaptive Tests (Millán and Pérez de la Cruz 2002) is a proposal which
combines Bayesian Networks with adaptive testing. Student models are based on
Bayesian Networks, where the student’s knowledge state is represented by variables
describing his/her knowledge level in a concept. Diagnosis is carried out by adap-
tive tests on the leaves of the network, whose results are propagated to other nodes.
One of the disadvantages of this proposal is that the learning of network conditional
probabilities is not considered by the model.

Another similar proposal is the Granularity–Bayes model (Collins et al. 1996)
which combines CBAT-2 with a student model also based on Bayesian Networks. This
approach inherits the disadvantages of CBAT-2 and in addition, their authors indi-
cate that the use of Bayesian Networks makes this proposal computationally intensive.
Certainly, nowadays Bayesian Networks technologies have evolved considerably. Now
efficiency is not a problem thanks to the use of an approximate propagation algorithm
(see (Castillo et al. 1997)) and dynamic Bayesian Networks (e.g. Mayo and Mitrovic
2001). Unfortunately, the authors of Granularity-Bayes appear not to have continued
with their proposal.

Other authors (Desmarais and Pu 2005) have compared IRT and Bayesian
Networks. They have developed a Bayesian Network-based proposal, called POKS,
where items are linked with each other. These relations have been established without
requiring any knowledge engineering effort, but are based on statistical information.
According to the studies done by their authors, the performance of POKS in compar-
ison to an IRT-based 2PL model (it is equivalent to the 3PL model, but assumes that
guessing is always equal to zero) is comparable when classifying the students in two
levels (master or non-master).

Finally, ACED (Shute et al. 2005) is an adaptive e-learning system for student
diagnosis developed under the ECD framework (mentioned earlier). ACED is a
promising prototype developed for students of middle school mathematics with and
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without visually disabilities. This system also employs a Bayesian Network for infer-
ring students’ models. Additionally, it uses an adaptive algorithm for task selection
based on computing the one whose expected weight of evidence is maximum.

8 Conclusions and future work

In this paper we have presented a proposal for student modeling and diagnosis in
conceptual domains structured in trees. Student knowledge is represented by means
of probability distributions, one for each concept. The contributions of our work may
be placed in two different fields, i.e., IRT and student modeling.

From the IRT perspective, we have presented a new IRT-based model for adaptive
testing-based diagnosis of student knowledge. This proposal uses a feasible polyt-
omous response model. Although there exist lots of polytomous models, none of
them seem to be feasible because they have a lot of prior requirements. However,
these kinds of models are able to extract more information from student answers
than dichotomous ones (which only take into account whether the answer is correct
or incorrect). Hopefully, this feature makes diagnosis more efficient regarding the
number of items required, given a certain accuracy threshold. In fact, simulations
performed suggest that this is so. For instance, for a threshold of 0.001, the diagnosis
procedure requires fewer than nine items, and their results have a success ratio of
99%. Our proposal also includes an extension of item selection criteria to polytomous
response modeling. Experiments have revealed that among all these criteria the best
one in terms of diagnosis accuracy and number of item required is the Bayesian one.

Our IRT model is also discrete. This feature considerably reduces the computa-
tional cost, especially for the item selection stage. As we remarked before, this is a
very important issue for us, since we have implemented this model as a web-based sys-
tem and we want to use it massively (i.e., with huge sets of students simultaneously).
In addition, when comparing our discrete response model with the continuous 3PL
model, experimental data suggest that ours is more efficient computationally. This
issue is particularly significant for item selection where the time is reduced by 97%.
While 3PL requires on average around 380 ms., our proposal needs less than 14 ms.

This proposal also includes a calibration algorithm, based on kernel smoothing,
with which the number of prior student sessions can be reduced, still obtaining rea-
sonable estimations. Simulations again show that this algorithm is efficient, since with
just a sample of only 20 test sessions, calibration results of 200 curves can be considered
acceptable and useful for diagnosing correctly (a success rate of 95%).

From the point of view of user model structure, in this special issue, several pro-
posals can be found, such as Bayesian Networks (Horvitz and Paek 2007), influence
diagrams (Chickering and Paek 2007) (i.e. generalizations of Bayesian Networks) or
other hierarchical networks (Nanas and Uren 2007). For our student models, we have
suggested the use of hierarchically structured curricula. Some experiments show that
this structuring can produce a more accurate diagnosis, in comparison to considering
only one single concept. The degree of improvement depends on the goodness of the
item partition.

Our diagnosis procedure also simultaneously evaluates the student knowledge in
several concepts by administering just one test, obtaining accurate enough estima-
tions in all concepts. This can be done by adding a new phase to the item selection. In
this phase the concept whose estimation is less accurate is selected before the item is
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chosen. Note that one of our selection criteria (the bayesian one) does not need this
previous stage, since it uses the accuracy of posterior knowledge distribution to make
the item selection. Therefore, we provide inter-item multidimensional tests.

In addition, regarding multidimensional IRT, the experiments conducted have
revealed that our hierarchical model is very close to multidimensional IRT in terms
of prediction of student behavior.

Certainly, we are aware of the fact that our proposal for student modeling lacks
many desirable features (e.g. it only considers aggregation relationships, no miscon-
ceptions are modeled, etc.). The main reason for this simplification is that we have tried
to achieve a trade-off between student modeling and diagnosis based on well-founded
formal theories.

Concerning future work, we plan to intensively apply our system to the construc-
tion of diagnosis modules of real ITSs. For instance, at the beginning of instruction,
it could be useful to initialize the student model by means of a pretest; during the
instruction, to update the student model; and at the end of the instruction, to provide
a global snapshot of the state of the knowledge. We are also currently working on the
development of a task model based on the library of sophisticated items provided by
our system SIETTE (Guzmán and Conejo 2004a). Furthermore, the use of a polyt-
omous model allows us to extract statistical information about the choices which have
been selected incorrectly by students. Using this information, we could perhaps model
misconceptions.

Finally, we must mention that all features described in this paper have been imple-
mented in our Web-based diagnosis tool SIETTE (http://www.lcc.uma.es/siette).
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