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Abstract. Reliable student models are vital for the correct functioning of 
Intelligent Tutoring Systems. This means that diagnosis tools used to update the 
student models must be also reliable. Through adaptive testing, student 
knowledge can be inferred. The tests are based on a psychometric theory, the 
Item Response Theory. In this theory, each question has a function assigned 
that is essential for determining student knowledge. These functions must be 
previously inferred by means of calibration techniques that use non-adaptive 
student test sessions. The problem is that, in general, calibration algorithms 
require huge sets of sessions. In this paper, we present an efficient calibration 
technique that just requires a reduced set of prior sessions.  

1   Introduction 

The construction of Intelligent Tutoring Systems (ITSs) requires the development of 
reliable mechanisms to supervise interaction with the students. One of the most 
common solutions to this end is testing. Generally, test-based diagnosis systems use 
heuristic solutions to infer student knowledge, but these solutions are in conflict with 
the aim of obtaining a reliable diagnosis. In contrast, adaptive testing theory 
guarantees this reliability, since it is based on a well-founded theoretical background.  

The advantages of adaptive tests are that they require a smaller number of 
questions (called in this context items) than conventional tests. Each student usually 
takes different sequences of items, or even different items. Factors such as the items 
that must be posed to the student and when the test must finished are dynamically 
determined in relation to a previously established estimation of the student’s 
knowledge. 

However, one of the most important shortcomings of adaptive testing is that, in 
order to be used, items included in this type of tests require a preliminary calibration 
process. Through calibration, item characteristic functions are determined. These 
functions are vital to the proper functioning of an adaptive test. Thus, this 
disadvantage can be considered the most important, since it is essential to get valid 
and reliable adaptive testing based diagnosis. Calibration requires having available 
huge sets of test sessions previously done by students. These students were 
administered non-adaptive tests.  
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In previous papers [4], we presented an adaptive testing-based cognitive 
assessment model. This paper introduces the item calibration technique that has been 
developed. This technique is more efficient than conventional approaches, and the 
general requirements have been considerably relaxed. In particular, it reduces the 
number of prior test sessions needed.  

This paper is structured as follows: The next section is dedicated to adaptive 
testing and Item Response Theory. In section 3 a brief description of the cognitive 
assessment model is outlined. In section 4, the mechanism used for item calibration is 
studied. Finally, Section 5 discusses the contributions of this paper and future tasks 
that we plan to accomplish. 

2   Theoretical Background 

Generally, in adaptive testing (a.k.a. Computerized Adaptive Testing) [10], items are 
posed one at a time. The final goal of an adaptive test is to estimate quantitatively the 
level of student knowledge as expressed by means of a numerical value (usually in the 
real number domain). The response model is the central element of the adaptive 
testing theory. This model supplies the underlying theoretical background. It is 
usually based on the Item Response Theory (IRT) [5]. IRT is a probabilistic theory 
that determines: how the student knowledge is inferred, how to calculate the most 
suitable item that must be posed to each student during the test, and when it must 
finish. It is based on two principles: a) Student performance in a test can be explained 
by means of his/her knowledge level. b) The performance of a student with a certain 
knowledge level answering an item can be probabilistically predicted and modeled by 
means of functions called characteristic curves.

There are hundreds of IRT-based models and different classification criteria of 
them. One of these criteria deals with how the models update the estimated student 
knowledge in terms of his/her response. Thereby, IRT-based models can be: (1) 
Dichotomous models: Only two possible scores are considered: correct or incorrect. A 
characteristic curve is enough to model each item, the Item Characteristic Curve
(ICC). It expresses the probability that a student with a certain knowledge level has to 
answer the item correctly. (2) Polytomous models: The former family of models does 
not make any distinction in terms of the answer selected by the student. No partial 
credit is given. This means information loss. To overcome this problem, in this family 
of models each possible answer has a characteristic curve called Trace Line (TC). It 
expresses the probability that a student with a certain knowledge level will more than 
likely select this answer.  

Polytomous models usually require a smaller number of items per test than the 
dichotomous ones. Nonetheless, dichotomous models are most commonly used in 
adaptive testing environments. The main reason is that the calibration process is 
harder in polytomous models. Instead of calibrating one curve per item, a set of TCs 
must be determined per item. This means that the prior set of non-adaptive test 
sessions is greater. While a test of dichotomous items requires several hundreds of 
prior test sessions, a test of polytomous items requires several thousands [4].  
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3   The Cognitive Assessment Model 

This model assumes that the declarative knowledge in a certain subject (or course) 
can be represented by means of a hierarchy of topics (or concepts), forming the 
curriculum. All these topics are related by means of aggregation relations. 
Accordingly, this curriculum can be seen as a granularity hierarchy [6]. These topics 
symbolize knowledge pieces, where leaf nodes represent a unique concept or a set of 
concepts inseparable from the assessment point of view. 

In order to assess the student knowledge state in part of (or in the whole) 
curriculum, items must be created and linked to the topics they assess. Thus, items are 
student knowledge evidence providers. The relationship between an item and a topic 
expresses that the item is used to assess the topic. Thanks to the aggregation relation 
between topics, if an item provides evidence about the student knowledge in a topic T,
it will provide evidence of the knowledge in all preceding topics of T in the 
curriculum hierarchy. This relation is supported by means of characteristic curves as 
will be explained in a posterior subsection.  

For this cognitive model, an IRT-based model has been developed. It uses a 
discrete scale to measure the knowledge level, where the number of knowledge levels 
in which the students can be classified is a configurable parameter. Let K be the 
number of knowledge levels, student knowledge can be found between 0 (absence of 
knowledge) and K-1 (full knowledge). Accordingly, characteristics curves turn into 
vectors, i.e. a probability value per knowledge level. This model is also polytomous. 
Therefore, for each pair item answer-topic assessed, there will be a different TC. 
Consequently, the number of item TCs is equal to the topics it assesses, multiplied by 
the number of possible answers. A restriction must be imposed to ensure the 
maintenance of all probabilistic properties: for each pair item-topic the sum of all the 
TCs must be equal to one in each knowledge level.  

This response model uses a non-parametric approach. This means that, 
characteristic curves are not constrained by any model. [9] indicates that parametric 
models are commonly used without checking if they actually are appropriate for 
calibration input data, and this is unacceptable from a statistical perspective. The goal 
of calibration is to infer the TCs that represent the real student behavior while taking a 
test, not to force the TC shape to fit certain model far away from this behavior. In 
addition, the use of a non-parametric approach facilitates the calibration process, as 
will be shown in the next section. 

4   Item Calibration 

Kernel smoothing [7] is a statistical technique very popular thanks to its simplicity. It 
has been traditionally used to determine non-parametric regression curves. It is based 
on the principle that given a set of observations X and a function m, the set of 
observations next to x, should contain information about the value of m in x.
Accordingly, to estimate the value of m(x) it is possible to use some kind of local 
average of the data closest to x [8]. 

Some psychometricians have previously used kernel smoothing in adaptive  
testing [7]. In our cognitive assessment model, kernel smoothing is used to calibrate 
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the TCs of our polytomous response model. Accordingly, using kernel smoothing, the 
TCs will be determined for each pair item-topic. The procedure for calibrating the set 
of TCs of all items that assess certain topic C has the following steps: 

1) Prior student session compilation: From all test sessions available, all of them 
that involved the topic C are collected. The information of these sessions required 
for calibration is the answer that each student selected per item. Information on 
any other item not involving topic C is purged. 

2) Score computation: For each student, his/her score is computed. This is done 
heuristically, since it is useful just for ordering the students’ performance in the 
test. For instance, one of the ways to do this is by calculating the percentage of 
items successfully answered. 

3) Score transformation: The percentage obtained in the former phase is 
transformed into a temporary knowledge level. It is made by calculating the 
corresponding quartile in a standard normal distribution. After that, this value is 
mapped to the discrete scale used to represent the knowledge level. 

4) Session sort: Student test sessions are ordered in terms of their temporary 
knowledge level. 

5) Smoothing: For each item, their TCs are computed using Equation 1. p(ui=rj|θk)
is the probability value of the TC vector of the answer j of the item i for the 
knowledge level k.
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where F is the so-called kernel function.
6) Iterative refinement: This step is optional. Using the calibrated TCs obtained in 

the previous step, the student real knowledge levels in topic C are computed. 
These new values can be used as a feedback to recalibrate the TCs. This process 
should continue until the values of the student knowledge levels and the TC 
values remain unchanged. 

This calibration procedure must be repeated for all the topics of the curriculum. 
Once all the TCs have been calibrated, any time they will be used (now in adaptive 
tests), they could be updated with these new test session results. Accordingly, this 
process could be repeated, automatically or on demand, getting more accurate 
estimations of the characteristic curves. 

Conventional calibration techniques are iterative procedures that require too much 
time [9]. In contrast, through kernel smoothing, calibration is a non-iterative 
procedure (even when the refinement step is carried out, it just requires a few 
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iterations). Using this calibration technique, the number of prior student sessions can 
be reduced, yet reasonable estimations are still obtained1.

5   Conclusions and Future Work 

The main contribution of this paper is a calibration technique that makes feasible the 
use of adaptive testing with a polytomous response model. This method is based on 
kernel smoothing. It requires a reduced number of prior student sessions in 
comparison to the conventional calibration algorithms. This calibration technique has 
been included in a polytomous response model.  

This algorithm just represents the starting point of this research. Exhaustive 
experiments must be carried out in order to study its behavior and to determine the 
prerequisites for the minimum requirements of the prior student sessions necessary to 
obtain reasonable calibration results.  

A prototype of the cognitive model and the calibration technique is currently 
implemented in the SIETTE system (http://www.lcc.uma.es/siette) [1]. It is a web-
based system that can be used as a diagnosis tool inside web-based ITSs, or as an 
independent testing application. It allows teachers to include new items and tests 
through an elicitation tool.  
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