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Abstract: - This paper reports on the application of artificial neural networks to Item
Response Theory. In particular the competitive learning paradigm is used to build a neural
network that determines a particular student's ability level given his answers to items with
different levels of difficulty. The results are analysed and compared with other models
within the framework of Item Response Theory.
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1.- Introduction

Most of the practical applications in the Theory of
the Measurement in Psychology and Education are
based in the Classical Tests Theory, deficiencies of
which encourage the search of alternative models. The
most relevant are the ones based in the Item Response
Theory (IRT) [1], initially known as latent trait theory.
The IRT, based on strong hypothesis, tries to give
probabilistic foundations to the problem of non-
observable traits measurement.

All the IRT based models have some common
features: (1) they suppose the existence of latent traits or
aptitudes (in our particular case the trait is the student
knowledge level) that allow predicting or explaining
examinee behaviour with a test item; (2) the relation
between the trait and the response of a person to the
item can be described with an increasing monotonous
function called Item Characteristic Curve (ICC), that
establishes the responses likelihood.

This paper describes the use of artificial neural
networks in Item Response Theory. In particular
competitive paradigm has been useful in providing an
estimation of Item Characteristic Curve and classifying
a student in a certain knowledge level. The current work
emphasises how the competitive learning is a valuable
aid in clustering the training patterns into representative
groups. In the area of competitive learning a rather large
number of models exist which have similar goals but
differ considerably in the way they work [2]. Two

different models have been considered in order to study
if the performance of a supervised net is better than an
unsupervised one in this case. A simulator program has
been constructed to study the empirical characteristics
of each one.

This paper is structured in the following way: First
of all, the Item Response Theory and the classical
methods of ICC parameter estimation is presented. After
that, the neural models used in this paper are briefly
presented. The IRT problem representation by using
these neural models is presented in the next section.
Finally, section 5 presents the empirical results obtained
by using a simulation program, and analyses the self-
learning capabilities. At the end, the advantages
obtained with the use of neural models instead of the
classical approach are summarised and some open
issues in this line are proposed.

2.- IRT.

Item Response Theory (IRT), also known as latent
trait theory, was originated in the late 1960s and had its
roots in psychological measurement theory. As Lord
and Novick explain [3], the term latent trait original
referred to a hypothetical psychological construct that
was suposed to underlie an individual's observed
behaviour. In a testing context, according to Wainer and
Messick [4], this definition translates into a latent trait,
an attribute that accounts for the consistency of tests'
responses. Such an underlying trait can be visualised as
a continuum on which persons and test items can be



placed according to their ability or level of difficulty.
The position of students in this continuum, which may
be represented by a numerical scale, can be estimated on
the basis of their responses to suitable test items [5].

In the classical way, each question or item in a test is
assigned an Item Characteristic Curve (ICC) which is a
function that represents the probability of given a right
answer to that question given a certain student’s
knowledge level θ ∈ (-∞,+∞), defined as a real number.
Lets represents this by the expression: P(Ui=1| θ) or
simply Pi. Logically, the probability of failing the
question is P(Ui=0| θ) = 1-P(Ui=1| θ), or simply Qi. If
the test is composed by n questions, knowing the ICCs,
and supposing local independence of items, a likelihood
function can be constructed:
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The maximum of this function gives an estimation
of the most likely value of θ. A distribution of the
probability of θ can be obtained applying n times the
Bayes’ rule.

One of the main problems in IRT theory is to find
out  the ICCs. Several models has been proposed. The
most popular are those that suppose that the ICCs
belong to a family of functions that depends on one, two
or three parameters. These functions are constructed
based on the normal or the logistic distribution function.
For instance, based on the logistic function the ICC
might be described by:
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where bi is known as the difficulty of the question; ci is
the guessing factor, and ai the discrimination factor.

The guessing factor is the probability of that a
student with no knowledge at all solves the question
The difficulty represents the knowledge level in which
the student has equal probability to answer or fail the
question, besides the guessing factor. The
discrimination factor is proportional to the slope of the
curve. If the discrimination factor is high then the
probability students with level lower than b will
probably fail and students with lever higher than b with
more surely give the right answer.

Assuming that the ICC forms belong to this family,
the problem is now formulated as the estimation of the
parameter that fits better.

In order to estimate this parameters, it is known that
one-parameter model (where ai and ci are supposed to
be constants) is relatively simple to use and yields
reliable estimates with as few as a hundred subjects. The
two-parameter model (ci constant) takes the possible

differences in the items' discrimination into account and,
though this results in higher accuracy, it also means that
the increased complexity of the model will require a
higher number of participants, two hundred at least. The
three-parameter model even takes guessing into
account, but the price to pay for this includes a sample
of a minimum of one thousand subjects [6]

The most common situation is found when both
person ability and item difficulty parameters are
unknown. In this case it is needed a matrix formed with
the responses given by N students to a set of n items.

There are a lot of methods of estimating such
parameters but Join Likelihood Maximum and Marginal
Likelihood Maximum are the methods commonly used.

2.1. Estimation by Joint Likelihood
Maximum

Join Likelihood function, when it is considered N
students responding to n questions, is:
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where local independence is supposed and au  is the

response pattern of a student corresponding to the n
items considered, θ  is a vector which components are
N  parameters of  person ability (one for each student);

c , , ba  are also vectors formed by item difficulty

parameters. In the three-parameter model there are n3
item parameters, in the two-parameter model n2  and in
the one-parameter model n  parameters. So in the three-

parameter model a total of Nn +3  parameters will
have to be estimated.

The values of the parameter are found by
maximising the likelihood function, or its logarithm
given by
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The item difficulty and person ability are not
univocally determined by this method. In order to
eliminate this indeterminate solution an arbitrary scale
is chosen for θ  y b , usually the standard scale with
mean 0 and standard deviation 1. Then initial values for
the person ability parameter is selected, normally ln(nº
success/nº fails); to each subject. Now the item
parameters are estimated in the way described above. In
a second phase item parameters are considered known
and ability parameters are estimated. This procedure is
repeated until the minimum differences in the estimators
of the parameters between two successive stages are
reached.



2.2. Estimation by Marginal Likelihood
Maximum

In this method tested subjects represent a random
sample and the ability parameters have a specific
probability distribution. Excepting special cases,
conditional independence of different item responses
given by subjects with the same ability θ  is supposed
so it is possible to calculate the joint probability of item
patterns in responses corresponding to a subject with
ability θ . The probability of observing a pattern u  of a
person with unknown ability θ  randomly selected from

a population with a continue density distribution )(θf
for θ  is the unconditional probability defined by
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This is called marginal probability of u , and it is
important to note that it only depends on item
parameters. In [6] can be found further details in
estimating marginal probability in applications

Simulation studies have shown that Marginal
Likelihood Maximum estimators and its typical errors
are more consistent and reliable than Joint Likelihood
Maximum, when they are applied to short sized
samples.

3.- Competitive learning

An important feature of neural networks is the
ability to learn from their environment and through
learning to improve performance in some sense. In
competitive learning, as the name implies, the output
neurons of a neural network compete among themselves
for being the one to be active (fired). It is this feature
that makes competitive learning highly suited to
discover those statistically salient features that may be
used to classify a set of input patterns.

The goal of competitive learning is to cluster or
categorise the training patterns into representative
groups such that patterns within a cluster are more
similar to each other patterns belonging to different
clusters. Based on a learn only if it wins, that is, winner-
take-all principle, neurons in a network based on
competitive learning compete to move to the centroids
of similar patterns and consequently uncorrelated
patterns will be encoded by different neurons.
Depending on the nature of applications, the available
training patterns could be unlabelled or labelled, and
hence unsupervised and supervised competitive
algorithms were proposed accordingly. In the

application considered in this paper two different
competitive algorithms of which one is unsupervised
and one is supervised are used. The unsupervised
algorithm is the standard competitive algorithm. Among
the supervised algorithms, it was chosen Kohonen's
learning vector quantization (LVQ), with negative and
positive reinforcement learning. The standard
competitive learning is described in the next subsection
and the Kohonen algorithm is described as a variation.

3.1. Standard Competitive Learning
Algorithm

The competitive learning algorithm is usually
associated with a layered feedforward network with
fixed output nodes as shown in Figure 1.
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Figure 1

The algorithm can be defined with the next steps:

Step1 -. Initialisation:

- Set the number of competing neurons c.

- Initialise the neuron's weights vectors
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Step2 -. Distance computation:

- For input pattern kx
r
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for all competing neurons cj ,,1 L= . It represents

the influence that input units, weighted connections
and the bias 2/jjj ww

rr ′=θ  have on neuron.

Step3 -. Competition:

- Determine the wining neuron r having
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hmax=rh  that neuron is nearest to the input

pattern and produces a +1 output for it and zero
outputs for the losing neurons.

Step4 -. Learning:

- Update the winning neuron's weight vector as
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where )(tα  is the learning rate the is usually
monotically decreasing.

Step5 -. Termination:

- Repeat steps 2-4 until the terminating criterion is
met.

3.2. Learning Vector Quantization
Algorithm

Unlike Standard Competitive Learning, Kohonen's
learning vector quantization (LVQ) [7] is a supervised
type competitive learning that works the
misclasification rate. Competing neurons have to be
labelled a prior to a specific class and the number of
competing neurons should be equal to or greater than
the number of classes considered. The LVQ algorithm
may well described by the Standard Competitive
Learning algorithm with the following modification in
the learning rule:
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and )(⋅Cl denotes the class of operator. Thus, LVQ
adopts a reinforce-or-punish learning principle in the
competitive process so as to move the winning neuron's

weight vector jw
r

closer to the class centroid if the

current training pattern kx
r

 is correctly clasified and to

move jw
r

 out of the misclassified region if kx
r

 is

wrongly clasified.

4.- IRT neural representation

When a practical neural network application is
considered simply knowing how neural network models
behave is quite only half of the problem in creating such
application. The other aspect of building successful
neural-network applications is the process of acquiring
and modelling the application data, selecting the most
appropriate network model for the application.

Our study of this neural network application design
in IRT will begin by first describing, in detail, data
representation, network architecture selection and
training options. We conclude by illustrating the
performance of the network model.

One of the first tasks to be done to apply neural
computation to IRT is to formulate the theory in the
domain of full and finite numbers, instead of real
numbers. The knowledge level of a student is no longer
a real number between -∞, and +∞, but a full number in
the range [0,N]. This approximation is accurate enough
for most real applications. This simplification makes
sense because to evaluate a student it is normally
assume by teachers that the final qualifications are tags
like A+, A, B+, etc.

Therefor, the ICCs are now viewed as (N+1)-
component vectors, whose components are the
probabilities that a student of each knowledge level
could give the right answer to the question.

Knowing the ICCs a competitive neural network can
be constructed in the following way:

First of all the problem is defined precisely; that is,
mathematically. It is a considered like a problem of
clustering because the responses given by N students to
a set of n items are given in order to determine the
knowledge level of a student that is a full number in the
range [0,10].

Given such identification of the problem the training
input set of N examples with n features can be
represented by a set of N vectors where { }1,0∈kjx ,

nj L,1= . When the j component of vector k

is 0=kjx  means that the student k has failed the

question j, and 1=kjx  indicates that this student gave

a correct answer to the question.

The goal is to construct a neural network that forms
its own classification of the data from the training
examples into predetermined number of clusters. Each
group represents the knowledge level associated to a
student. A network paradigm that performs that task
required is competitive learning. So a competitive layer
with 11 neurons and n input units was chosen as
network architecture (see figure 2).

In the net described above there is an associated set

of weights iw
r

for each cluster 10,,1,0 K=i . These

weights of the net are the components of the ICCs, and
taking into account that the competitive learning
implements the bayesian classification [8], the winner
neurone will give the best estimation of the student’s

knowledge level 10,1,0, K=iqi .
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Figure 2

In a neural network with the architecture described
above, two learning algorithms were employed to train
the weights in the clusters so an estimation of ICCs are
calculated. First, the standard competitive learning as
unsupervised algorithm was considered and then
Kohonen's learning vector quantization, a supervised
competitive mechanism was applied. In the next
subsection a comparative analysis of both nets is shown.

One of the advantages of this approach is that it is
not necessary to consider any particular form or family
of curves for the ICC. For each ICC, N+1 parameters
are directly inferred from the learning mechanism

On the other hand, when a reasonable good
estimation is done, the results of the evaluation of a
student are quite accurate, and could be used as a sort of
unsupervised learning mechanism. This mechanism
improves the performance of the network. We do not
have a theoretical prove of this result, but empirical
results using a simulator of students and questions.

5.- Empirical results evaluation

In order to obtain empirical results about the
application of neuronal networks with competitive
learning to the Item Response Theory, a tests simulator
has been developed. The tests simulator is a program
that has five main processes: (a) Generates a set of
questions with their corresponding ICCs to be used in a
test. (b)-Simulates the answer of a set of students while
making that test (c) Classifies the simulated students
according to their knowledge level using a neural
network with the structure described in the previous
section (d) Applies the learning mechanism to the neural
model to improve the weights that represents the ICC of
each question, and (e) Presents the results and some
statistical information..

There are several factors that can be configured in
the simulation of a test, both in the ICCs of the
questions and in their global features. The main are: (1)
Evaluation method: that can be modal, percentage or
real; (2) Learning method: that can be data-adaptive, or
block-adaptive. (3) Student knowledge distribution: that
can be homogeneous or binomial. (4) Number of

students simulated (=number of tests to simulate); (5)
Number of classes or knowledge levels, that equals the
number of the output layer. (6) Number of questions per
test; or length of the questions database, that equals the
number of cells in the input layer; and (7) Initial
questions set; that can be correct, equilibrated or
undefined. Along this main parameters it is possible to
define the ICCs of the questions, by giving the classical
parameters: (a) difficulty (real or estimated), (b)
discrimination factor (real o estimated); and (c)
guessing factor (real or estimated); and

5.1.-Types of questions sets

The first process to execute a test simulation is to
generate a questions set. Each questions has associated
three ICC that are used during the simulation:
§ Actual Item Characteristic Curve, that represents the

actual distribution of the question ICC and it is
supposed to be unknown by the system. This curve is
used to simulate the answer of the students to the
question.
§ Estimated Item Characteristic Curve, which is the

estimated distribution used to evaluate the students
during the simulation, and that are related to the
weights assigned to the connections of the net.
§ Learned Item Characteristic Curve, which is

distribution that is constructed during the simulation,
and are related to the new weights calculated after the
learning mechanism. Learning is done by replacing
the estimated curves with these ones, either data-
adaptive, or block-adaptive.

As it has been mentioned above, the system can
work with different initial sets of questions that have
particular conditions. The types of sets are:
§ Correct: is a set of questions that are well calibrated

by the instructor or test designer. The estimated ICCs
are equals to the actual ICCs. There are two subtypes:

- Homogeneous: there is the same number of
questions for each difficulty level.

- Random: the number of generated questions for
every level is not the same.

§ Equilibrated: This set represents the case in which an
instructor calibrates empirically a set of questions. Not
all the questions with real difficulty equal to k have
assigned this value, but the mean value of his/her
estimation is correct. more precisely, if dri is the
actual difficulty for the question i and dei is its
estimated difficulty given by the teacher. A set of
question is equilibrated if:

§ kdemeankdrik ii ==∀∀ )(, ,

§ That is, it is mandatory that the mean of the difficulty
parameters estimated a priori will be the same than the
actual difficulty of all of them. There are three kinds
of equilibrated sets:



- Homogeneous: if the real difficulty level is dr,
there is the same number of questions badly
classified of estimated level dr+n than dr-n
( ( )[ ]1,9,0 −−∈ drdrminn ).

- Random: the number of questions badly classified
is not the same than the witch ones in the levels
dr+n and dr-n. It is obtained with a binomial
random distribution whose mean is centred in the
set real difficulty.

- Extreme: it is an equilibrated set with a maximum
variance of the difference of estimated and actual
difficulties.

The initial weights of the network connections are
calculated from the values of the initial estimated ICCs
which are constructed taking discrete values of the
normal distribution function.

5.2. -Learning

There are two types of learning implemented
depending on the frequency of update
§ Data-adaptive: the weights are updated at each

iteration, one update per datum.
§ Block-adaptive: the update is executed upon the

completion of each sweep, that is after a certain
number of students has passed the test.

The network learning mechanism is applied directly. In
the competitive standard network the weights wij of the
connections represents exactly the j values that define
the learned ICCs of the questions i

In the simulator there are two options for the learning
algorithms:
§ Actual evaluation: the final classification of the

network is discarded and the actual value of student
knowledge is taken as the winner neuron.
§ Modal evaluation: it is obtained by considering the

network classification itself,

The most interesting question is to know if the network
can improve the quality of the set of questions’ initial
estimated ICC. That is, if the estimated ICCs of the
questions will be closer to the actual ICCs, after
applying the learning mechanism and if this task can be
done with the unsupervised mechanism. If the questions
set quality is improved it will consequently improve the
number of student well classified.

5.3.-Test simulation.
The simulation process starts after the system has

generate the set of questions that will be used. The
system simulates as many students as number of tests
has been indicated in the input parameters. Each student
is represented by his/her real knowledge level (it is
assigned a random number between the knowledge level

classes bounds) and his/her estimated knowledge that is
computed by the net.

Each generated student will make a test. The
answers of a student or input vector to the network is
composed by the answers to each question in the set.
The answer to each question is generated randomly with
a certain probability according to the actual knowledge
of the student and the actual ICC of each question. It is
represented by 0 or 1 in the corresponding input cell.

The trained neural model then will be used later in
the retrieving phase to process the pattern corresponding
to this student and yield classification.

5.4. - Empirical results

In order to observe the results of applying neuronal
networks to the IRT a set of simulations have been
realised. Several tests have been systematically
simulated changing the initial question set (equilibrated
random or homogeneous), and the competitive learning
algorithm (standard or LVQ).

Diverse measurements to compare the results have
been used. The mains are the mean of the distance
between the actual and learned ICCs and the percentage
of students well classified with and without learning.

The distance is a statistical estimator that indicates
how different is the actual ICC from the estimated one.
Similar estimators have been used in psychometric to
define the parameter estimation degree. The distance for
each question is:

[ ]∑
=

=

−
Nk

k

kCCEstimatedIkActualICC
0

2)()(

to compare two sets of questions the mean of the
distances is used.

The simulations have been executed with 1000
students (=number of tests). The results are showed in
the tables 1 and 2.

The firsts proofs have been done to confirm that if
the initial questions set is correct then the percentage of
students well classified (with modal evaluation) is quite
near to the total number of students (96%-97%). That
indicates that the net constructed with its initial weights
as the questions ICC works correctly.

The next experiments are oriented to observe what
happens if the initial questions set is not correct.
Improving the weights of the nets will be equivalent to
calibrate the ICC of the questions (firstly defined by the
test designer or the instructor).

The questions initial set used it is equilibrated
homogeneous and the mean of its ICCs distances is
0,0278.

If the actual evaluation is applied then we obtain a
reduction in the ICCs distances regarding to the ICCs



initial distances. That is, the net improves its weights
and consequently the ICCs become better.

  If modal evaluation is applied the improvement of
the ICCs it is worse than with the actual.

In general the results are better with LVQ algorithm,
it confirms that a supervised algorithm suites to IRT. A
substantial difference respect to the percentage of
students classified correctly exists when data-adaptive
learning is considered, with LVQ is superior. That is
because Standard Competitive Algorithm has some
disadvantages like the dependence of data presentation
order.

Block
adaptive

Data
adaptive

Final Means of ICCs
distance 0,0049 0,0744

M
od

al

Students classified
correctly 77,7% 20,1%

Final Mean of ICCs
distance 0,0021 0,0021

A
ct

ua
l

Students classified
correctly 100% 100%

Table 1 Simulation results applying Standard Algorithm

Block
adaptive

Data
adaptive

Final Means of ICCs
distance 0,0119 0,0118

M
od

al

Students classified
correctly 78,6% 86,8%

Final Mean of ICCs
distance 0,0099 0,0094

A
ct

ua
l

Students classified
correctly 100% 100%

Table 2 Simulation results applying LVQ algorithm.

6. - Conclusions

A new representation of the IRT procedure has been
presented in this paper. One of the main differences
between the classical and the neural approach is that the
first one uses continuous functions defined in the real
number domain to represents the ICC and the student
estimated knowledge, and the latest uses discrete values
between 0 and N.

The discrete approach is easier to implement by
using a neural competitive net and its computational
cost is less than solving the continuous equations.

One of the main advantages of using neural nets is
that the learning mechanism of the network can be
applied to improve the initial estimation of the

parameters that define the questions ICC. The classical
methods for parameter estimations are very complex
and usually they are applied only once for an initial
calibration set of students. The incremental mechanism
of the neural learning can be implemented during all the
life of the test, and so the test will gain information and
improves its performance each time it is applied.

There are many open issues that still remains: We do
not have a theoretical prove of the convergence of the
ICCs parameters for the equilibrated set, but it makes
sense and is easily proved if the equilibrated set is
symmetrical, (which is a very restrictive and unreal
condition). Nor there is no prove for other times of
initial sets that reflects common error of the teacher
while creating a IRT test. It is also desirable to use real
world data for questions ICCs and students answers,
instead of simulated values.

It is also planned to construct other neural models
and study its performance compared to the competitive
model.
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