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Abstract. SIETTE is a web-based evaluation tool that implements CAT theory.
With the help of a simulation program, different empirical experiments have
been performed with SIETTE with two different goals: a) to study the influence
of the parameters of characteristic item curves and selection criteria in test
length and accuracy; and b) to study different learning strategies for these
parameters. The results of the experiments are shown and interpreted.

1 Introduction

One of the subtasks in an ITS is the evaluation of student’s knowledge. SIETTE
system [3] has been proposed as a general-purpose web based evaluation system.
SIETTE implements Computer Adaptive Test (CAT) [5] methodology to improve its
performance by reducing the number of questions needed to estimate student’s level
of knowledge, and is based upon the classical Item Response Theory (IRT). SIETTE
has been designed as a reusable component to implement a generic task [1] for
evaluating the knowledge level of a student about certain domain.

Teachers can continuously update the contents of SIETTE question database. This
open architecture allows the system to evolve and improve its performance over the
years. On the other hand, this on-line development of question databases is just the
opposite of the desired scheme for classical item calibration. Fortunately, the potential
great number of students that take the tests provides valuable information that can be
used to successively improve teacher’s estimations of item parameters.

The main contribution of this paper is an empirical analysis of two issues, namely,
the behaviour of SIETTE when using incorrectly calibrated item pools and the
feasibility of on-line methods for item calibration in SIETTE. The empirical method
proposed and implemented uses a program that simulates the behaviour of teachers
and students using Monte Carlo techniques.

Item Response Theory (IRT), also known as Latent Trait Theory, was originated in
the late 1960s [2]). In a testing context, the latent trait is an attribute (knowledge
level) that accounts for the consistency of test responses. Each question or item is
assigned a function (Item Characteristic Curve, ICC) that represents the probability of
answering to it correctly given the student’s knowledge level θ ∈ (-∞,+∞). Let us
represent this probability by the expression: P(Ui=1| θ) or simply by Pi. One of the
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main problems in IRT theory is to find out the ICCs. It is usually assumed that ICCs
belong to a family of functions that depend on one, two or three parameters. These
functions are constructed based on the normal or the logistic distribution function. In
the three-parameter logistic model the ICC is described by:
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where ci is the guessing factor, bi  is the difficulty of the question and ai is the
discrimination factor. The guessing factor is the probability that a student with no
knowledge at all answers the question correctly. The difficulty represents the
knowledge level in which the student has equal probability to answer or fail the
question, besides the guessing factor. The discrimination factor is proportional to the
slope of the curve. If the discrimination factor is high then students with level lower
than b will probably fail and students with lever higher than b will probably give the
right answer. Assuming that the ICC belongs to this family, the problem of calibrating
questions can be formulated as finding the best estimations for the parameters.

Section 2 of this paper describes the implementation of IRT used in SIETTE and
the simulator program, and presents some empirical results obtained for correctly and
incorrectly calibrated item pools. Section 3 describes a new on-line learning
procedure that improves the behaviour of the system by learning item parameters.
Finally some conclusions and open issues are addressed.

2 Simulating the Behavior of SIETTE

In this section, we will describe the techniques that we have used to emulate the
behavior of the SIETTE system. First, we will describe how to simulate a correctly
calibrated item pool.

2.1. Student, Item and Test Simulation

SIETTE implements the IRT model assuming that student's knowledge can be
represented as a random variable θ that takes integer values between 0 and Kmax. This
simplification implies that only a fixed and finite number of states of knowledge are
considered. Simulated students as proposed in [4] are used. Every student is
represented by his/her value for θ. The simulation begins with the random generation
of a population of N students, i. e., with the generation of N random concrete values
for θ. These values are considered constant during the test (that is, no student learning
occurs while taking the test). In the simulations described here the population has
been generated to be uniformly distributed in 0, ..., Kmax. However, other distributions
have also been used, not yielding significant differences in the outputs.

Each item is represented by its ICC. An ICCs is also given by K values,
corresponding to the conditional probabilities of giving the correct answer to the
question given that the student belongs to each of the K classes. The simulator uses a
set of Q void questions (ICCs), that are assumed to be correctly calibrated. These
ICCs are generated by assigning values to the parameters a, b, and c in a continuous
logistic function, and taking the corresponding values for the K percentiles. The
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simulator allows changing these parameters or to assign them random values, in order
to obtain different item pools.

At the beginning of the test, the student is assigned an a-priori probability of
belonging to each of the K classes in which the students can be classified. The
posterior probability is computed applying Bayes’ rule. The final result of a test is a
distribution of probabilities that the student belongs to each class. The test finishes (in
the general case) when the probability of belonging to certain class reaches a fixed
threshold ρ (close to 1). This criterion is equivalent to setting a maximum threshold
for the standard deviation, which is the one widely used in IRT. Then, we can say that
the student belongs to this class with a confidence factor greater than ρ. Other
termination criteria can be used, as for example the maximum number of question to
be posed.

The simulator successively poses a question to the virtual student and updates
his/her probabilities of belonging to each class. This question can be selected
randomly or using CATs criteria. The procedure is repeated until the termination
criterion is met. Student’s behaviour is determined according to his/her estimated
knowledge level and the conditional probability that a student of this knowledge level
solves the question correctly. That is, if the virtual student has a knowledge level k
and the value of the question ICC for knowledge k is p, a semi-random uniformly
distributed value q in [0,1] is generated. If q>p, the system will consider that the
student gave a correct answer to the question.

2.2. Simulating a Correctly Calibrated Item Pool

The first empirical analysis carried out concerns how the accuracy of student's
classification and the average number of questions posed T depend on the number K
of knowledge levels considered and on the confidence factor ρ. The percentage of
correctly classified students has been computed for an item pool of Q = 103 randomly
generated questions (ICCs), where b is uniformly distributed in [1, Kmax-1], a=1.2, and
c= 0.0 The simulation generates N = 105 students. Table 1 shows the results.

The interpretation is that, even with a correctly calibrated item pool, it is not easy
to classify "all" the students correctly. This is due to the IRT model itself, that
assumes that it is possible (but with a low probability) that a student with a low
knowledge level will answer a difficult question correctly and viceversa. The results
also show that the percentage of correctly classified students depends more on the
confidence factor required that on the number of classes used. On the other hand, the
number of questions posed is strongly related to the number of classes considered. For
practical reasons, the test should have as few questions as possible, because long tests
would be too boring for real students. This practical consideration leads to a
compromise between the number of questions and the number of classes.
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Table 1. Accuracy of IRT approximation

Confidence factor ρ = 0.75 Confidence factor ρ = 0.90 Confidence factor ρ = 0.99

Number of
classes K

% of correctly
classified
students

Average number of
questions posed T

% of correctly
classified
students

Average number of
questions posed T

% of correctly
classified
students

Average number of
questions posed T

3 84.05 2.00 95.82 3.58 99.46 5.65

5 81.61 6.23 92.76 10.38 99.37 19.27

7 80.96 11.11 92.85 18.16 99.38 33.12

9 80.86 16.15 92.93 26.39 99.42 47.27

11 80.52 21.19 92.92 34.54 99.26 60.85

The second empirical analysis studies how the accuracy of student's classification and
the average number of questions posed T depend on the quality of the item pool, i.e.,
on the parameters a, b and c. If a increases, the percentage of correctly classified
students increases, and the average value of T decreases. If c increases, this
percentage decreases a little, but the number of questions posed is much bigger.
Tables 2 and 3 show the results obtained by using different values for a and c,
(ρ=0.90 and K=7).

Table 2. Guessing factor influence Table 3. Discrimination factor influence

Guessing
factor c

% of correctly
classified
students

Average number of
questions posed T

Discrimination
factor c

% of correctly
classified
students

Average number of
questions posed

0.00 92.85 18.16 0.20 90.4 174.9

0.10 92.37 25.34 0.50 91.5 35.2

0.25 92.11 36.05 0.70 91.9 26.3

0.33 91.73 43.37 1.20 92.8 18.1

0.50 91.49 63.37 1.70 93.8 15.3

2.20 95.4 14.8

These results show the great influence of c in the number of questions needed. The
discrimination factor, a, does not have such a great influence in the number of
questions if it is bigger than certain threshold. For values smaller than that threshold,
the number of questions needed grows very fast. That means that items with low
discrimination factor are not informative enough and therefore yield too long tests.

The third empirical analysis carried out concerns how the accuracy of student's
classification and the average value of T depend on the number K of knowledge levels
considered and the selection criterion for posing the next question.

It is known that a CAT procedure can be introduced to improve the performance of
the classical IRT model. Two different criteria to select the next best question to ask
have been implemented in our simulator: a)  bayesian criterion, that selects the
question that minimises the posterior variance of the student knowledge distribution
and b) adaptive criterion, that selects the question which difficulty equals the average
knowledge of the student. Both criteria are equivalent for logistic ICC, as proved
theoretically. Table 4 shows the empirical result obtained with the simulator (with
 ρ=0.90) .  It is interesting to compare these results with those obtained in the central
files of Table 1, that correspond to selecting the items randomly:
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Table 4. Accuracy of the CAT approximation

Bayesian Selection criterion Adaptive Selection criterion

Number of
classes K

% of correctly
classified students

Average number of
questions posed T

% of correctly
classified students

Average number of
questions posed T

3 96.06 3.58 95.62 3.58

5 93.31 6.87 94.67 7.37

7 92.75 8.70 94.43 9.03

9 92.53 9.85 94.23 10.14

11 92.10 10.71 94.14 11.02

The number of questions needed is almost half of the number needed using random
selection. These results encourage the use of a CAT procedure, but, as it will be
shown later, it is very important to assure that the item pool is correctly calibrated.
The adaptive criterion has been chosen over the bayesian one because it gives similar
results, but its computational cost is much smaller (this is not surprising, since our
ICCs are a discretizations of the logistic model). Similar results are obtained with
other discrimination and guessing factors.

2.3. Simulating an Incorrectly Calibrated Item Pool

In Section 3.1, we have assumed that the item pool was correctly calibrated. This is
not a fair assumption. In fact it can never be perfectly calibrated, because there is a
hazardous component that leads to a known bounded error. To simulate the behaviour
of an incorrectly calibrated item pool, let us consider that each question in the
database has two ICCs: the real ICC and the estimated ICC. This is the usual situation
when the item pool has been calibrated by a human teacher/expert. Our goal is to
study the influence of incorrect calibration in the results of the test. To this end, the
simulator uses the real ICC to simulate the answer of the question as described in
Section 3.2 and the estimated ICC for any other task.

First, we will assume that the teacher has correctly calibrated the difficulty
parameter, but not the discrimination factor a.. Table 5 shows the results obtained
assuming that each question has a discrimination factor randomly distributed between
0.7 and 1.7 and that the teacher has assigned a fixed value ae to all of them (ρ=0.90
and Κ=7). Compare the results with the ones shown in Tables 1 and 3:

Table 5. Discrimination factor incorrectly estimated

Random Selection criterion Adaptive Selection criterion

Estimated discrimination
factor a

e

% of correctly
classified students

Average number of
questions posed T

% of correctly
classified students

Average number of
questions posed T

0.2 60.5 67.1 96.6 146.5

0.5 83.2 36.0 96.2 28.0

0.7 93.2 26.6 96.2 16.8

1.2 92.1 18.4 93.9 8.9

1.7 86.1 14.7 86.7 6.4

If discrimination factor estimated ae is bigger than certain lower bound, the percentage
of students correctly classified and the number of questions needed do not change
very much. For any reasonable estimation of the discrimination factor, the percentage
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of correctly classified students depends more on the number of questions posed that
on the exact value of the estimated discrimination factor.

In a second experiment, we assume that some estimations of the difficulty
parameter are erroneous, but the error is not biased. That is, sometimes the estimated
difficulty is higher and sometimes lower than the real difficulty, but this error is
normally distributed around the real difficulty. The same assumption will be made for
the discrimination factor. We will call this an equilibrated item pool. The justification
for this assumption is that, in fact, the knowledge level assigned to a student has not a
real meaning by itself: it is only a relative value, like the IQ used in psychology.
There is a degree of freedom that is commonly solved in the classical MML parameter
estimation procedures by assuming that, for the students in the testing group, the
knowledge level has certain distribution. The assumption of an equilibrated item pool
reduces this degree of freedom by linking test results to teacher’s wishes. If the item
pool is prepared by a group of teachers, this hypothesis can be interpreted as a
consensus in the meaning of each of the classes (levels) considered. Table 6 shows the
results obtained from an equilibrated item pool (randomly constructed) with around
35% wrong assigned difficulty factors, ρ=0.90, and Κ=7  classes:

Table 6. Equilibrated item pool (ρ=0.90)

Random Selection criterion Adaptive Selection criterion

Estimated discrimination
factor a

e

% of correctly
classified students

Average number of
questions posed T

% of correctly
classified students

Average number of
questions posed T

0.2 55.4 78.2 85.4 186.8

0.5 83.1 32.1 82.4 33.3

0.7 85.4 25.8 81.1 18.3

1.2 83.1 16.0 78.4 8.6

1.7 73.7 12.0 71.4 6.1

Logically, the percentage of correctly classified students has decreased, but the
discrimination factor and the selection criterion applied play a very important role.
The most significant conclusion is that, if the item pool is incorrectly calibrated, better
results are obtained when applying the random criterion instead of the adaptive, which
seems very logical. The second is that the lower the estimated discrimination, the
higher the accuracy of the classification. Unfortunately, when the discrimination
decreases the number of questions posed increases, and, if it is too small (smaller than
0.5) the accuracy decreases very quickly.

The good behaviour of small discrimination factors is due to the smaller distance
between the estimated and the real ICCs. If the question is incorrectly calibrated, it is
better to assume it is not too informative. The fact that the random method shows a
better behaviour is explained by the number of questions posed.

In Table 7, the hypotheses are the same as in 6, but we use tests with a fixed
number of questions (confidence factor changes accordingly):
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Table 7. Equilibrated item pool (fixed number of questions)

Random Selection criterion Adaptive Selection criterion

Estimated discrimination
factor a

e

% of correctly
classified students

Average number of
questions posed

% of correctly classified
students

Average number of
questions posed

0.7 85.6 25 85.1 25

1.2 85.3 25 85.4 25

1.7 83.6 25 80.2 25

Note that the results are similar (sometimes even better using the random criterion)
due to the fact that the main advantage of the adaptive criterion (the smaller number
of question it usually needs) was lost when fixing the number of questions. Different
results but similar conclusions are obtained with other values for ρ  and Κ.

3 On-Line Learning

Taking into account that the results of the test are mainly correct if it can be assumed
that the questions set is equilibrated and enough questions are posed to the student; it
would be possible to use the results of the test get a better estimation for the ICCs.
This has been called on-line calibration in IRT literature [5]. None of the methods
described for on-line calibration, like the EM or BIMAIN are used in our simulator.
However it would be possible to improve the behaviour of the learning mechanism if
some extra information could be added, for example if we know that some questions
are correctly calibrated and some of them are new (as proposed by Mislevy, cited by
Wainer in [5]). A bootstrapping learning procedure can also be used.

In SIETTE, it is possible to learn the probability of each value θ of the ICC array
directly from the responses of an examinee that has been classified as belonging to
certain class θ. After an examinee has finished a test, all questions that compose the
test are fed with the global result obtained and the response (correct/incorrect) to that
question. A new learned ICC (ICCL) can be obtained by just dividing the total number
of positive cases C+(θ) by the total number of cases C(θ). The better the results of the
test, the better the quality of the learning process.

3.1. Incremental and Non-incremental Learning

Learning takes place when the current estimated ICC (ICCE ) is replaced by the new
learned ICC (ICCL) This could be done a) incrementally, that is each time a test is
completed and keeping all the information from previous examinees; b) by packages,
that is, after a fixed number of examinees has completed the test. The new ICC is
learned only from the most recent examinees’ data without previous information; c)
non-incrementally, that is after a complete set of examinees has passed the test.

In the incremental and package modes there could be a problem if the number of
examinees in the package is small, because some values of the ICC could be out of
experimental cases. This problem is even more serious at the beginning of the
incremental mechanism, because there is only one case available. The solution to this
problem is to include a small amount M of initial experimental cases that makes the
learned ICC be initially equal to the current estimated ICC. In the simulator, this
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contour condition has been included only in the incremental mode, so in this case the
ICCL is obtained by
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where pe is the estimated probability, p is the real probability, σ is the standard

deviation of the binomial distribution � �S�S�É�&Ô −××= and a is a constant. So,

for example to be 95% sure that the real probability is estimated with an error of
p±0.05, if p is in the neighborhood of 0.5 (worst case) we should take a sample of
C(θ)=400. On the other hand, in this problem not all cases observed come from the
right population, because there are also can be errors in the classification process. Our
working hypothesis is that the errors present in an equilibrated item pool are
compensated. The examinee is sometimes classified higher and sometimes lower.

3.2. Measuring the Learning

The great advantage of using a simulator is that there is complete control over all of
the variables that influence the system performance, and that the behaviour of the
examinees is only conditioned by their a-priori-known knowledge. So a direct way to
measure of the goodness of the learning mechanism could be to measure the
improvement in the test performance: the percentage of correctly-classified examinees
should increase. Another way of measuring the learning is to define a distance
between the real ICC (ICCA) and the learned ICC (ICCL). We have selected the
simplest distance function:
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The goodness of the calibration of an item pool can be measured by the average
distance among its elements. Table 8 shows the results obtained with each learning
mode, at the end of a set of 102, 103, 104 and 105 tests, where ρ=0.90, Κ=7,  and the
initial question database is an equilibrated item pool of L=116 questions, with around
50% incorrectly estimated difficulty parameters. The true value for the discrimination
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factor of all questions in the set is 1.2 but all of them have been estimated initially to
be 0.7. The selection criterion was random.

Table 8. Non-incremental, package and incremental learning with random selection

Learning
procedure

Examinees
learning

sample size

% of correctly
classified
students

Average
number of
questions

Average cases
for learning

C(θ)

Average
distance to the

correct set

% of questions with
correctly estimated

difficulty

0 75.9 23.8 0 0.090 51.7

100 74.0 24.7 2.8 0.089 49.1

1000 74.9 23.6 28.9 0.042 94.8

10000 75.9 23.8 294.6 0.035 100

Non-
incremental

learning

100000 75.8 23.9 2945.1 0.033 100

0 75.9 23.8 0 0.090 51.7
1000 76.1 23.7 29.1 0.046 89.7
10000 77.2 16.8 18.3 0.045 94.8

Packages of
1000 learning

100000 71.8 13.7 13.7 0.061 71.5
0 75.9 23.8 0 0.090 51.7

10000 76.0 23.9 293.8 0.035 100Packages of
10000 learning 100000 87.3 19.2 232.3 0.012 100

0 75.9 23.8 0 0.090 51.7
100 73.0 21.9 2.1 0.079 58.8
1000 81.4 20.8 25.2 0.041 94.8
10000 88.1 19.4 238.4 0.017 100

Incremental
learning

100000 90.2 19.1 2360.8 0.009 100

It should be noted that the upper bound of learning is given by the results obtained
with a correct set. Table 1a shows that for ρ=0.90 and Κ=7,  the correct set will
classify the 92.8% of examinees correctly, requiring an average of 18.1 questions with
the random criterion. The percentage of correct classified student shown in Tables 8
are the average during the experiment, including the initial cases when questions have
not been modified yet.

Non-incremental learning exhibits good results for approximately more than 104

examinees. Package learning is not so good if the package size is smaller than that
size. The reason is that there are not enough values to estimate the ICC probabilities
for each class. In fact, table 8 show that, if the package is small, there is no
convergence. The explanation of this behaviour is that there is a great variance in the
learned ICC from just 1000 examinees, and if a poor quality ICC replaces the current
estimation the following generation will not be evaluated correctly. Table 8 shows
that the incremental learning mode has a better behaviour. ICCs are updated
continuously, so both the performance of the test and the quality of the learning
process are better. Table 9 shows the results of the same experiment but applying the
adaptive criterion to select the question. The criterion to finish the test has been turned
off and replaced by a fixed number of questions posed to every examinee, around the
same figure that has been used in previous experiment. The results are now even
better than those obtained with random criterion. The explanation is that with the
same number of questions, the adaptive test classifies better than the random test, so
learning is also improved.
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Table 9. Incremental learning with adaptive selection and a fixed number of question posed

Examinees
learning sample

size

% of correctly
classified
students

Average
number of
questions

Average cases
for learning C(θ)

Average distance to
the correct set

% of questions with right
estimated difficulty

0 80.9 20 - 0.090 51.7
100 82.0 20 2.0 0.079 55.2
1000 90.2 20 24.2 0.045 94.8
10000 95.1 20 245.9 0.019 100
100000 96.1 20 2462 0.009 100

3.4. Parametric and Non-parametric Models

SIETTE is designed to be a non-parametric IRT model and it is not necessary to
assume any shape for the ICCs. Unlike others non-parametric models, SIETTE does
not attempt to approximate a continuous function for the ICC from a sparse set of
points, but it deals directly with those points. The above learning mechanism does not
make any assumption about the shape so it is appropriate for the non-parametric
approach. Another point of view could be that SIETTE deals with K-1 parameters that
are the conditional probabilities of each knowledge level. However, there are also
some disadvantages in the non-parametric approach. First of all, the classical 1, 2 and
3-parameter models need much less information to be calibrated than the SIETTE
model for any K-1 greater than 3. But a non-parametric learning mechanism can be
converted in a more efficient parametric mechanism simply by approximating the just
learned ICC by a member of the family of functions considered. This approximation
can be done by different methods. In our simulator the sum of weighted minimum
squares between the ICCL and the isomorphic discrete transforms of the logistic family
is computed, and the more similar logistic curve is selected. Tables 10 show the
results of parametric learning using random selection criterion for 103, 104 examinees.
It should be compared to Table 8.

Table 10 Non-incremental and incremental parametric learning with random selection

Examinees
learning

sample size

% of correctly
classified
students

Average
number of
questions

Average cases
for learning

C(θ)

Average
distance to the

correct set

% of questions with
right estimated

difficulty

0 75.8 23.9 - 0.090 51.7
100 77.0 22.2 2.1 0.101 44.8
1000 76.5 23.4 27.4 0.044 92.2
10000 76.9 23.9 293.4 0.034 100

Non
incremental
parametric
learning 100000 75.8 23.9 2949.5 0.033 100

0 75.8 23.9 - 0.090 51.7
100 83.0 25.8 2.8 0.074 60.3
1000 85.1 22.4 27.3 0.037 96.5
10000 91.2 20.7 255.6 0.012 100

Incremental
parametric
learning

100000 92.5 20.3 2509.8 0.007 100

Another interesting point is that there seems to be a limit in the approximation that
can be achieved with non-incremental learning, either parametric or non-parametric.
The explanation of this residual error probably lies on the variance of the random
selection of questions from the equilibrated set. The original 116 question set is
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equilibrated, but the subsets of questions used in the test are not necessary
equilibrated.

4 Conclusions

Using a simulator program and applying Monte Carlo methods, we have studied the
behaviour of IRT and CAT in the SIETTE system in order to know the quality of the
information that can be extracted from a single test and the expected number of
questions needed.

For most applications in ITS it is enough to deal with 5-7 knowledge levels about
the domain. Less than 10 questions are needed (if they are correctly calibrated). It is
desirable to initially calibrate the question set, but it is also possible to trust in the
criterion of the teacher(s) that defines the test, and improve its performance by the on-
line learning mechanism described. On-line calibration of the ICCs could be done
directly, according to the responses of the student and the final result obtained at the
end of the test. It also can be done more efficiently if it can be assumed that the ICCs
shapes can be described by a family of functions.

If the test is not supposed to be correctly calibrated (i.e. many new questions have
been added recently) the best policy to follow is to assign a reasonable low
discrimination factor to the incoming questions. It will also be necessary to turn off
the adaptive behaviour or even better, keep the adaptive behaviour but force it to
increase the number of questions needed to complete the test. This constraint should
be eliminated once the question set has been self-calibrated.

The results presented in this paper are obtained from empirical experiments in a
simulated environment. It would be also necessary to develop some experiments with
real world data. On the other hand, we are currently working in a formalisation of the
concept of equilibrated item pool and in a theoretical demonstration of the results
obtained empirically with the simulator.
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