®

Check for
updates

First Steps Towards Automatic Question
Generation and Assessment of LL(1)
Grammars

Ricardo Conejo®™) @), José del Campo—AVila , and Beatriz Barros

Departamento de Lenguajes y Ciencias de la Computacién, Universidad de Mélaga,
Campus de Teatinos, 29071 Mélaga, Spain
{conejo, jcampo,bbarros}Quma.es

Abstract. Automatic question generation and the assessment of proce-
dural knowledge is still a challenging research topic. This article focuses
on case of it, the LL(1) grammar design. This is a well known tech-
nique for construct a top-down parser. There are many tools that given
a context-free grammar can construct the LL(1) tables, but they are not
designed for assessment. This article describes an application that covers
all the tasks needed to automatize the assessment process.

Keywords: Automatic assessment *+ Question generation + Procedural
knowledge - Adaptive feedback - Top-down parsing

1 Introduction

Compiler construction is a compulsory subject in almost all computer science
degrees. Here the student learn different algorithms, tools and methods necessary
to understand how a compiler for a programming language is constructed [1]. A
core part of compiler construction is the design of the language grammar and
the construction of the parser. The LL(1) technique allows to construct efficient
top-down parsers based on theoretical grounds, but it requires some conditions
to be met for the grammar design. Let’s introduce some concepts that are used
in this article:

A context-free grammar (CFQG) is defined as G(N, T, P, S), where N is a set
of non-terminal symbols, T is a set of terminal symbols, P is a set of production
rules (of the form A — ~, where A is called the antecedent and v € (NUT)* is
called the consequent), and S is the aziom. The languages that can be generated
by a CFG are called context-free languages (CFL).

LL(1) grammars are a subset of context-free grammar (CFG) that accomplish
the LL(1) condition. There is a well-known algorithm to efficiently determine if
a context-free grammar is LL(1) and construct its parsing table. It is based on
the construction of the functions FIRST, FOLLOW and the directive symbols
of each production rule DS [1]. LL(1) languages are those context-free language
that can be generated by an LL(1) grammar.
© Springer Nature Switzerland AG 2022

M. M. Rodrigo et al. (Eds.): ATED 2022, LNCS 13356, pp. 271-275, 2022.
https://doi.org/10.1007/978-3-031-11647-6_50


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11647-6_50&domain=pdf
http://orcid.org/0000-0003-0810-4608
http://orcid.org/0000-0001-8171-6198
http://orcid.org/0000-0001-6546-3688
https://doi.org/10.1007/978-3-031-11647-6_50

272 R. Conejo et al.

This article describes the implementation of a computer-based assessment
application, constructed as a plugin of the SIETTE assessment system (see
Sect. 2) that is able to automatically generate a random CFG and evaluate the
student answers.

2 System Architecture

In order to assess the student knowledge and skills needed to design and imple-
ment LL(1) parsers for a given language, we have implemented a plug-in exten-
sion of the SIETTE assessment environment. Using this plug-in and some of the
standard features of SIETTE, we are able to automatically generate different
types of questions.

2.1 The SIETTE Assessment System

SIETTE [2] is a general-purpose automatic assessment environment that sup-
ports the generation of different question based on JSP templates, different types
of questions and student answer interfaces; automated recognition of students’
open answers based on regular expression patterns; and a flexible support of any
other assessment requirement based on the construction of a plug-in extension.
SIETTE implements the Classical Test Theory (CTT), Item Response Theory
(IRT), Computer Adaptive Testing (CAT), and it provides built-in statistical
and psychometric tools to analyze students, tests and questions results.

The student answer is given to SIETTE in a plain or structured text format.
SIETTE recognizes whether the answer is correct using a pattern matching pro-
cess. Patterns are provided by the teacher and the matcher algorithm is imple-
mented as a plug-in. There are some default matcher plugins that are already
implemented in SIETTE. On of them is the SIETTE regular expression that
allows to recognize the student answer based on a regular expression pattern
provided by the teacher or, in this case, automatically generated.

2.2 Automatic Generation of Context-Free and LL(1) Grammars

One of the first challenges of this project is to define a way to generate small
context-free languages that can be used to pose questions to students. The alpha-
bet of these languages (terminal symbols) is restricted to lowercase letter in order
to be easy to write it in text format. non-terminal symbols are written using
uppercase letters. The aziom of the grammar is always the non-terminal symbol
that appears on the left hand side of the first rule.

Small context-free grammars can be generated just by setting the antecedent
and a random length string that combines terminal and non-terminal symbols.
This strategy requires validating the generated grammar and repeating the pro-
cess until a correct grammar is obtained.

On the other hand, a well defined context-free grammar can be generated
based on composition of “building block” grammars. The building blocks are



First Steps Towards Automatic Question Generation 273

tiny context-free grammars with just two or three production rules. Some of
them are listed below:

A — Aa
A—a (1)
A — aAb
A— ab (2)

The plug-in defines some building block grammars, but they can be easily
extended as needed. Using this building blocks we apply a composition rule just
by replacing a terminal symbol with a non-terminal symbol of another building
block. For instance, combining Block 1 and Block 2 in this order will generate
the following grammar:

A — AB
A— B
B — aBb
B —ab

On the other hand, combining Block 2 and Block 1 grammars can give one
of these four grammars:

A — BAb A — BAb A — aAB A — aAB

A — Bb A — Bb A — aB A — aB
B — Ba B — Bb B — Ba B — Bb
B—a B—b B—a B—b

Note that there are four possible ways to combine Block 2 and Block 1
grammars, because we have two alternative options: (1) In Block 2, there are
two terminal symbols, so we have two options to replace a terminal with a non-
terminal of the second grammar; (2) we have to choose if the terminal symbols
of the resulting grammar are the same or not. Nevertheless, without loss of
generality, we can always assume that terminals are different, and at the end of
the generation process, two or more symbols can be merged as a single terminal.
That is, in the last example, options 2 and 4 can be obtained from options 1 and
3 just by considering that terminal a and terminal b are the same. This process
is delayed until we finish the combination process.

Thus, a context-free grammar can be randomly generated by selecting the
building blocks to combine, the number of combinations to apply (or alterna-
tively the number of production rules in the final grammar) and the final number
of terminal symbols (which will randomly merge two symbols until the desired
number of terminal symbols is met).

Finally, a validation and refinement process is triggered to eliminate unused
rules or symbols, and/or duplicate rules, to guarantee that the context-free gram-
mar is correct and that the FIRST and FOLLOW sets can be effectively calcu-
lated.



274 R. Conejo et al.

2.3 Automatic Construction
of LL(1) Parsers

Given a context-free grammar it is
always possible to compute FIRST and
FOLLOW functions and obtain the
directive symbols of each production
rule [1]. The result of these functions
are a set of symbols. Determining if a

Question number 1: GENO1 (1298726)

Given the grammar:

S — A$
A — ab
A — ABb
A
B — aB
B — ABB
B—-b

NOTES:
« Inthe answers, write the list of yes symbols separated by blanks.
« If necessary, to write the empty string € in the response, you must write EPSILON

Question number 1.1: GENO1-1 (1298762)

Find FIRST(A)

context-free grammar accomplishes the X arsion
LL(1) condition depends on these sets. v/ nesion
The system requires a student
response by asking to type the sym- Guestennumber s GENOT2 (1256759
bols in the set. The student can shuf- FremReTe)
fle the order of symbols in the set, but voee
the pattern will recognize the answer
anyway. Figurel presents a composed Question number 1.3: GENOT-3 (1208534
question where a common grammar has Find FOLLOW(A)
been generated, and some questions X o
about FIRST and FOLLOW sets are W B

posed. Each question is evaluated inde-

pendently. Fig.1. A composed SIETTE question

about FIRST and FOLLOW sets
3 Conclusion

The application described in this article provides a way for the student to
enhance the practice of design of the LL(1) context-free grammars. Although
the generation of an LL(1) grammar and the recognition of grammar equiva-
lence are unsolvable issues in the general case, a heuristic approach can provide
a practical solution for assessment purposes.

The application has been designed and used for formative and summative
assessment. It includes automatic recognition of student answers and person-
alized feedback. The application is embedded in the SIETTE system, which
provides additional features that can be used, such us adaptive question selec-
tion, scoring procedure selection, access control, etc. Question difficulty can be
controlled by means of the number of building block grammar combinations, but
it can also be obtained empirically through SIETTE question calibration and
learning analytic tools.

We do not claim that the system itself is responsible for the increase in the
student scores, but the data obtained from the students that have used the
system shows that it helps them to practise and be aware of their progress.



First Steps Towards Automatic Question Generation 275

Links to on-line assessments

FIRST and FOLLOW: https://www.siette.org/siette?idtest=631978
LL(1) analysis: https://www.siette.org/siette?idtest=633742

LL(1) table construction: https://www.siette.org/siette?idtest=525382
LL(1) grammar design: https://www.siette.org/siette?idtest=633700

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

2. Conejo, R., Guzman, E., Trella, M.: The SIETTE automatic assessment environ-
ment. Int. J. Artif. Intell. Educ. 26(1), 270-292 (2015). https://doi.org/10.1007/
s40593-015-0078-4


https://www.siette.org/siette?idtest=631978
https://www.siette.org/siette?idtest=633742
https://www.siette.org/siette?idtest=525382
https://www.siette.org/siette?idtest=633700
https://doi.org/10.1007/s40593-015-0078-4
https://doi.org/10.1007/s40593-015-0078-4

	First Steps Towards Automatic Question Generation and Assessment of LL(1) Grammars
	1 Introduction
	2 System Architecture
	2.1 The SIETTE Assessment System
	2.2 Automatic Generation of Context-Free and LL(1) Grammars
	2.3 Automatic Construction of LL(1) Parsers

	3 Conclusion
	References




