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Intelligent Tutoring Systems (ITSs) are one of a wide range of learning environments, where the main
activity is problem solving. One of the most successful approaches for implementing ITSs is Constraint-
Based Modeling (CBM). Constraint-based tutors have been successfully used as drill-and-practice envi-
ronments for learning. More recently CBM tutors have been complemented with a model derived from
the field of Psychometrics. The goal of this synergy is to provide CBM tutors with a data-driven and
sound mechanism of assessment, which mainly consists in applying the principles of Item Response The-
ory (IRT). The result of this synergy is, therefore, a formal approach that allows carrying out assessments
of performance on problem solving tasks. Several previous studies were conducted proving the validity
and utility of this combined approach with small groups of students, in short periods of time and using
systems designed specifically for assessment purposes. In this paper, the approach has been extended
and adapted to deal with a large set of students who used an ITS over a long period of time. The main
research questions addressed in this paper are: (1) Which IRT models are more suitable to be used in a
constrained-based tutor? (2) Can data collected from the ITS be used as a source for calibrating the con-
straints characteristic curves? (3) Which is the best strategy to assemble data for calibration? To answer

these questions, we have analyzed three years of data from SQL-Tutor.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Intelligent Tutoring Systems (ITSs) are probably the most well-
known product of the Artificial Intelligence in Education (AIED) re-
search community. ITSs are environments that help student learn a
subject matter. To do that, they use a knowledge base that is com-
prised of a student model and a domain model, modeling what
the student knows and what to teach, respectively. The teaching
process of an ITS consists of consulting the knowledge base and
adapting the content and tutorial actions according to the student
model. This behavior tries to mimic an expert human teacher who
adapts the process to every individual student. Perhaps the most
extended interaction pattern an ITS provides is an environment
where students can solve problems belonging to certain domain
matter. According to Jonassen [18], “most educators agree that prob-
lem solving is among the most meaningful and important kinds of
learning and thinking”. A problem exists when a problem solver has
a goal but does not know how to reach it. Problem solving is a
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mental activity aimed at finding a solution to a certain problem
[3]. The challenge of solving a problem forces students to build
models through a process of understanding, exploring and inter-
acting with the world, developing several branches of science at
all levels of education [30]. Thus, problem solving entails cognitive
processing with the goal of transforming a given situation into a
desired scenario when no obvious method of solution is available
to the problem solver [21]. According to Mayer [22] problem solv-
ing expertise can be decomposed into four components:

1 Problem translation, where the student transforms the problem
stem into an internal mental representation.

2 Problem integration, a mental model of the situation described
in the problem stem is constructed.

3 Solution planning, where the strategy to solve the problem is
determined, i.e. the steps to take in order to solve the problem.
This component requires the student to apply his/her procedu-
ral knowledge.

4 Solution execution, that is, the previous plan is applied to solve
the problem.

Constraint-Based Modeling (CBM) [39] is one of the most pop-
ular approaches for developing ITSs [8,43]. Its effectiveness as an
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Nomenclature

ITS: Intelligent Tutoring System

AIED: Artificial Intelligence in Education
CBM: Constraint-Based Modeling

IRT: Item Response Theory

ECD: Evidence Centered Design

ICC: Item Characteristic Curve

BN: Bayesian Network

CCC: Constraint Characteristic Curve

instructional methodology has been proved in a range of tutors
and studies performed over 15 years [33,35,37,38]. A characteristic
that makes it a very attractive approach is its ability to be applied
in a tutoring system easily since it does not require a complex ar-
chitecture. Furthermore, it does not require identifying all possible
steps a student could take to reach a solution to a problem. In-
stead, it only requires the identification of domain principles (rep-
resented as constraints) that no solution should violate.

Educational assessment characterizes aspects of student knowl-
edge, skill, abilities, or other attributes. For this characterization it
makes inferences from the observation of what they say, do, or
make in certain kinds of situations [5]. Furthermore, educational
assessment provides at least three different uses in instructional
improvement [3]: first, results obtained through assessment moti-
vate students and educational staff to achieve the academic goals
set by policy makers. In addition, it represents a way of helping
teachers to plan or revise their pedagogical strategies. Finally, as-
sessment can be used to help stimulate deep understanding. The
use of computers in testing is extensive nowadays. In the area of
problem solving, however, there is still an enormous range of op-
portunities to explore [3,52]. Problem solving activities require stu-
dents to apply their knowledge in constructing a solution to a cer-
tain situation [23]. One of the most recognized assessment tech-
niques is Item Response Theory (IRT), which gave rise to a set of
different models with different assumptions (see next section).

In our previous work [14,15] we made a first proposal of a
model of assessment combining CBM with IRT. This proposal can
also be seen as an implementation of the Evidence Centered De-
sign (ECD) framework [1,29,41], which focuses on providing a
generic methodology to perform assessments of problem solving.
This synergy between the AIED and psychometric mechanisms
opens the door to enhancing ITSs with new methods to perform
automatic assessment of tasks that, if carried out by a human ex-
pert, would be highly difficult and prone to subjectivity. As will
be explained later, the utilization of IRT makes it possible to apply
new formal psychometric methods in CBM that were not possible
before. In the same way, some of the fundamentals of CBM ex-
tend the typical use of IRT in testing environments, where theoret-
ical concepts are assessed, to ITS, which requires applying practical
knowledge to solve a problem.

Initially, in order to explore the validity of the approach for as-
sessment purposes, two educational systems were developed and
tested with undergraduate students of the University of Malaga
in Spain [13-15]. Although the knowledge base of these ITSs was
developed in well-defined domains, according to the classifica-
tion made by Mitrovic and Weerasinghe [36], the tasks involved
were completely different. In the first system, focused on the Sim-
plex algorithm for mathematical optimization, the number of con-
straints was small and the tasks were well-defined (i.e. those tasks
for which the process of solving them is known). On the other
hand, the second system, focused on teaching fundamentals of
Object Oriented Programming, had a relatively large number of
constraints and the tasks were ill defined with a complex solu-

tion procedure (having more than one solution or many ways to
achieve it).

Initial results obtained using CBM and IRT showed that the
methodology was feasible and promising in these types of do-
mains. Nevertheless, the experiments were carried out in systems
constructed for assessment purposes, with a small group of stu-
dents, using a particular IRT model and strictly following the re-
strictions imposed by the IRT to guarantee valid assessment results
under this theory. To the contrary, the most successful CBM-based
systems have been used mainly for learning purposes in drill-and-
practice environments. That means that a student is allowed to
solve the same problems several times which leads to the violation
of the IRT models assumed hypotheses (i.e. student knowledge is
constant during a session). This difference makes it necessary to
explore the scalability and validity of the existing models based
on the combination of IRT with CBM in tutoring systems used for
learning purposes and with a large number of students.

The research carried out in this paper tries to cover the afore-
mentioned problems by extending the existing methodology (ex-
plained in detail in the following sections) and performing a study
with a larger dataset obtained over three years of use of the SQL-
Tutor [34]. The aims of the study are: (1) to define an appropri-
ate methodology to accommodate IRT models to constraint-based
tutors; (2) to determine the most appropriate IRT models in this
case; and (3) to explore different strategies for grouping and fil-
tering existing ITS data to be used for the IRT calibration process.
The advantages of using this approach are that it provides a data-
driven technique that does not require heuristic knowledge. The
resulting ITS would be adjusted by standard statistical calibration
procedures that are not biased with the designer subjectivity.

The paper is structured as follows: Section 2 presents the the-
oretical background needed to understand both the model and the
calibration strategies presented in this paper. Section 3 describes
the related work in the field of AIED. Section 4 is devoted to
a formalization of our assessment model and a generalization of
that model to be used for ITS under the Evidence-Centered Design
framework; it also outlines the drawbacks of the early approach.
Section 5 proposes a new methodology to overcome the limitations
of our proposal with several strategies that can be performed in
the process of calibration. Section 6 describes the experiments and
the methodological issues and Section 7 presents and discusses the
results. Finally, conclusions are summarized in Section 8.

2. Theoretical background

The approach for assessment in ITSs is based on two main pil-
lars, corresponding to the two methodologies already mentioned:
CBM for modeling the ITS domain, and the IRT for assessing the
student’s knowledge in terms of the evidence provided by him/her
while solving problems. Both techniques are summarized here.
Moreover, the system used in this paper, i.e. SQL-Tutor, is also de-
scribed briefly.

2.1. Constraint-Based Modeling

The first element of the methodology is the CBM paradigm for
building ITSs, which will be the instrument through which stu-
dents’ evidence is gathered. CBM is based on Ohlsson’s theory of
learning from performance errors [39,40], according to which in-
complete or incorrect student’s knowledge can be used within an
ITS to provide guidance. This faulty knowledge is detected using
constraints, which are the key element of CBM. Constraints are
principles that must be followed by all correct solutions in the
given instructional domain. If the student’s solution violates any
constraints, it is incorrect and the system provides the student
with the appropriate feedback for remediation. Each constraint
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7’| Give the titles of books written by author whose id is 20.

S

Thats correct. You have specified all the necessary join
conditions.

A few mistakes though. One of them is in the FROM
clause. You can correct your query and press ‘Submit’
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Table Name Attribute List
AUTHOR  authorid Iname fname
PUBLISHER code name city
BOOK code title publisher type price paperback
WRITTEN BY book author sequence
INVENTORY  book quantity

Fig. 1. The SQL-Tutor interface.

consists therefore of an ordered pair (C, Cs), where C; is the rele-
vance condition and Cs is the satisfaction condition [33]:

If < relevance condition C, > is true,

then < satisfaction condition Cs > had better also be true.

The application of CBM is very simple, since only an infer-
ence engine and the appropriate representation of the solution are
required [31]. Accordingly, once the student has finished solving
a problem (or it can also be done before by student demand),
constraints are checked against the student’s solution using sim-
ple pattern matching. Constraints are only applied to solutions for
which they are relevant (as determined by the relevance condition
of each constraint). The satisfaction condition of a relevant con-
straint specifies properties that the solution must fulfill to be cor-
rect. The set of constraints and problems that can be presented
to students form the domain model of a particular tutor. The per-
formance of a student with respect to the constraints, i.e., the list
of violated and satisfied constraints in each solution take part of
his/her student model.

2.2. SQL-Tutor

In this paper, we have used data from one of the most popular
and successful constraint-based tutors, SQL-Tutor [34]. Although its
main source of users comes from the students enrolled in database
courses at the University of Canterbury in New Zealand, it is avail-
able worldwide via the DatabasePlace portal established by Addi-
son Wesley,! which uses SQL-Tutor and two other tutors developed
in the databases domain [32].

SQL-Tutor teaches SQL queries, which is the dominant relational
database query language. It is designed to help undergraduate stu-
dents with their difficulties mastering the subject. Although SQL is
a simple and well-structured language, students find it difficult to
learn due to the advanced concepts and cognitive overload [45] as-
sociated with this type of problem, which is a result of having to
keep in mind many details involved in the problem that is being
solved.

The interface of SQL-Tutor reduces the working memory load
by displaying the database schema and other information related
to the problem (see Fig.1). Without this information, the student
would have to keep in mind the structure of the database or han-
dle it by other means. Besides, the system presents the parts of

1 http://www.aw.com/databaseplacedemo/sqltutor.html.

the solution, simplifying the problem in different subgoals, each
one associated with the building of a particular component.

The correctness of a student’s solution can be verified by
submitting it to the system. Incomplete solutions can be sub-
mitted too. The system compares the student’s solution to the
constraints. SQL-Tutor’s domain model is comprised of a huge
set of constraints, with more than 700 defined so far. This
can give the reader an idea about the difference in magnitude
between the data that can be obtained with this system, with
respect to the systems used in existing studies, where the most
complex domain was comprised of 87 constraints and the simplest
had 18. Examples of constraints are shown in Fig. 2.

The violations and satisfactions of the constraints are used to
inform the students about their mistakes. The system provides
feedback in increasing levels of detail, starting from one that gives
little information to one that gives the complete solution [20]. The
history of use of each constraint is stored in the student model,
showing for each attempt whether the constraint was used cor-
rectly or whether it was violated.

Simultaneously with the process described above, the system
records all relevant activities of each student in a log file. This in-
cludes all the results that affect the student model and the scaf-
folding information. This log file containing qualitative information
about the students has been the source of evidence used in the
research presented in this paper.

2.3. The Item Response Theory

The second pillar of our assessment model a well-founded tech-
nique specifically developed for assessment, i.e. the IRT [49]. This
theory assumes that a latent trait (i.e. the student knowledge level)
can be inferred from the student’s answers to independent ques-
tions or items, which provides evidence based on conditional prob-
abilities named the Item Characteristic Curve (ICC) [17]. Its main
advantage in comparison with other assessment techniques is the
invariance of measurement. This means that the assessment score
is independent of the instrument of measure being used and, thus,
the same score would be obtained in any test taken [16].

The ICC, which is probably the most important concept in the
IRT, models the probability of answering a question correctly given
the student knowledge. Fig. 3 illustrates the shape of the ICC. As
can be seen, the greater the knowledge value (x axis), the higher
the probability of giving a correct response (y axis). There are dif-
ferent IRT models based on different ICC functions. This figure con-
tains what is probably the most popular function that implements
the ICC, i.e. the 3 Parameters Logistic (3PL), which is also depicted
in the equation below:
P(ui=1|9)=Ci+(1*Ci)W (1

Here, P(u; = 1|0) represents the probability of correctly answer-
ing the item i, given a student’s knowledge level 6 within the in-
terval (—oo,...,+00). The correctness of the question is represented
with u; = 1, otherwise 0 would be used to reflect a wrong state.
The other elements in the equation are the three parameters char-
acteristic of the 3PL function:

e q; is called discrimination factor and is a value proportional to
the slope of the curve. The greater this value, the higher the
distinction between different student’s knowledge levels.

e b;, also called difficulty, is the value of 6 for which the proba-
bility of answering correctly is the same as answering wrongly.

e The last parameter, ¢;, is the guessing factor and represents
the probability of a student without knowledge answering
correctly.

Only those models whose items can be assessed as correct or
incorrect, i.e. the dichotomous models, are considered here, such
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Constraint 207:

Constraint 387:

The join condition is of form al = a2,
attribute a2 comes from table t1,

C,: the WHERE clause is empty in both the student’s and ideal solutions,

and there is more than one table in the student’s FROM clause,

and the FROM clause of the ideal solution contains the JOIN keyword,
Cs: the JOIN keyword must appear in the student’s FROM clause.

Cr: The student specified a join condition in FROM using valid tables t1 and t2,

the ideal solution lists t1 and t2 in the FROM clause,
the join condition is not specified in FROM in the ideal solution,
its WHERE clause contains an attribute nl from table t1,
and this attribute is compared to an attribute n2 from table t2,
Cs: attribute al should be equal to n2, and attribute a2 should be equal to nl.

Fig. 2. Examples of constraints in SQL-Tutor.
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Fig. 3. The shape of an ICC under the 3PL model.

as the Two Parameters Logistic (2PL) or the One Parameter Lo-
gistic (1PL). Both of them are simplifications of the 3PL function:
the 2PL is equivalent to the 3PL but the guessing parameter would
be 0, and the 1PL is equivalent to the 2PL but fixing the discrim-
ination parameter to a given value, i.e. a;=1. However, there are
other approaches, e.g., the polytomous models, where more than
two answers are allowed and therefore partial credit to items can
be given [17]. This initial decision is congruent because constraints
are dichotomous.

Using the ICCs, and assuming (1) item independence; and (2)
constant knowledge throughout the session, the knowledge of the
jth student 6 can be computed as shown is equation:

n
P(6;) = T]P(ui=116;)"[1 - P(u; = 116;)] ™ )
i=1
where P(6;) is the jth student knowledge distribution; n is the
number of items administered to the student; u;; = 1 indicates that
the jth student’s answer to item i was correct, otherwise u;; = 0.
The likelihood function of a given set of response patterns is
therefore:

L(ula, by, ci. 6;) =T []P(u=116;) " [1-P(i=116,))] ™ 3
j=1i=1
where N is the total number of students.

There are different techniques for estimating the model param-
eters a;, b;, ¢; and the students’ knowledge 6; that maximizes this
function. One of them is the Marginal Maximum likelihood (MML).
This process is known as calibration and is carried out with the
help of the computer program Multilog [48].

In order to compare the goodness of fit of two different models,
with a different number of parameters, the ratio of the likelihood
function can be used. The test statistic is twice the difference in
these log-likelihoods:

D= —2]n<%> — —2In(L) + 2In(Ly) ~ x*(g) 4)

where g is the degree of freedom, which is computed as the dif-
ference in the number of parameters of the two models. Mul-
tilog output includes the negative-twice-log-likelihood value for
each model calibration. A model with more parameters will al-
ways fit at least as well (have an equal or lower negative-twice-
log-likelihood). Whether it fits significantly better and should thus
be preferred is determined by deriving the probability or p-Value
of the difference D.

3. Related work

There are three outstanding approaches for developing ITSs:
cognitive tutors, Bayesian Networks (BNs) and CBM. Cognitive
tutors are learning environments based on the ACT-R theory of
cognition [2]. That theory makes a distinction between declarative
and procedural knowledge. The first one involves factual knowl-
edge, whereas the second is based on production rules which
enable students to solve problems. Cognitive tutors include their
own mechanism to estimate the student’s knowledge during the
learning process, i.e. Bayesian Knowledge Tracing [10]. It models
the knowledge through hidden Markov models where binary val-
ues are assumed and give as a result short-term student models,
i.e. models oriented to adapt the instructional process according
to the estimations obtained during that process.

BNs are probably the most widespread approaches that have
been used for modeling student knowledge while solving a com-
plex task [12,42]. They are graphical modeling tools that have
been successfully applied in different application contexts [26].
These networks model the probability of a student mastering
a specific knowledge component in terms of the sequence of
responses given to previous elements of a task [12]. BNs have
been applied in intelligent tutoring systems to represent student
knowledge, e.g. [7,9,25,44,46,50,51]. BNs can also be combined
with other techniques such as machine learning [4]. When used
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Fig. 4. Conceptual assessment framework.

for assessment purposes, nodes of a BN can represent different
components of an individual such as knowledge, misconceptions,
emotions, learning styles, motivation, goals, etc. [8]. However, the
main drawbacks of BNs is the way of constructing the networks
that could affect to the results obtained, and the calibration of the
conditional probabilities, which is a complex process.

In the existing literature we have not found any other formal
methodology applied in CBM to assess students. Although in [24]
BNs were used to model the student by estimating the probabil-
ity of mastering a constraint, the estimates were not used as a
medium to get the students’ level, but to provide them with the
most appropriate instructional action. Even looking more generally
in the field, at the level of assessment in ITSs, we were unable to
find a well-founded approach that, using student’s interaction with
the system, automatically generates well-founded assessments.

More recently, Davier and Halpin [12] proposed a framework for
the assessment of cognitive skills in problem-solving tasks solved
collaboratively. They also proposed several statistical approaches
to model the data collected from collaborative interactions, where
they tried to measure separately the contribution of each student
to the final solution of the problem.

4. An assessment model for problem solving environments

Even though testing is the most common approach for assess-
ment in computer-based systems, there are some domains (es-
pecially those involving procedural tasks) where this evaluation
mechanism does not seem to be the most suitable. Several au-
thors such as [6] have pointed out that in any learning system
designed to emulate professional practice the assessment should
be performance based. Our proposal here is directly aligned with
that claim: students’ knowledge acquired in problem solving envi-
ronments should be measured in the same way, i.e. using a few
problems instead of forcing the students to take a test composed
of a large number of questions about the knowledge required to
solve those problems.

The goal of our assessment model is to provide a framework
for building assessment systems based on constraint-based tutors
powered by IRT models. Consequently, this proposal is the result of

combining two different lines of research, i.e. CBM and IRT-based
assessment, into a single environment able to be used both for
assessment and for learning purposes. As a result of this combi-
nation, a constraint-based tutor would be also able to perform a
formal and quantitative estimation of the student knowledge.

Our proposal can be framed under the Evidence-Centered Design
(ECD) methodology, which is a guideline for designing, produc-
ing and delivering educational assessments [28,29]. It incorporates
representations of what a student knows and does not know, in
terms of the results of his/her interaction performance (evidence)
with assessment tasks. According to Behrens et al. [5], “ECD frame-
work provides terminology and representations for layers at which
fundamental entities, relationships, and activities continually appear
in assessments of all kinds”. Knowledge representations, workflows,
and communications are organized in terms of layers [27]. Five
layers can be identified in ECD which are summarized below to-
gether with the way in which they have been particularized for our
proposal:

B Domain analysis, where relevant information about domains is
gathered, i.e., concepts, terminology, tools, knowledge represen-
tations, etc. In our case it consists of identifying the concepts,
skill, etc. involved in each problem and the constraints that
characterize the domain.

B Domain modeling, where the results of the previous layer are
represented in a model, in terms of assessment argument. For
our proposal, knowledge, skills and abilities are identified. They
will be measured in the student model. Additionally, observable
knowledge evidences are collected and, thus, the set of con-
straints identified during the analysis will be included in the
problems which will take part of the task model.

W Conceptual assessment framework: Structures of the assessment
model are designed (see Fig. 4). Here student observable
knowledge evidences (on left-hand side of the figure) are
related to non-observable features such as the student knowl-
edge (right-hand side of the figure). The Student model will
consist of probability distributions containing estimations of
the student knowledge, skills and abilities identified in the
domain modeling stage. In Fig. 4 these estimations are repre-
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sented as 04, 85,...,0,. These unobservable variables are linked
to the observable evidences through an evidence model, able
to transform those knowledge evidences into updates of the
student model. These observable evidences are provided by the
task model, which comprises the set of exercises or problems
the student has to solve (on the left-hand side of Fig. 4). More
concretely, in our proposal the task model consists of the set
of problems provided by a CBM tutor such as SQL-Tutor. The
evidence model uses the evidence provided by the CBM-based
problems and an IRT model is applied to them. Inside the
evidence model, two submodels can be found: the evaluation
submodel identifies the observable elements in the task model,
which will be used to perform the assessment. The statistical
submodel is responsible for the transformation of the observ-
able evidence into updates of the student model. The next
section will describe this evidence model in detail.

B Assessment implementation: The model generated as a result of
the previous layers is implemented and calibrated. As men-
tioned, calibration is a previous stage that needs to be done
before the assessment.

B Assessment delivery: Finally, the result of all previous layers is
compiled and used in an empirical environment to assess the
performance of students.

4.1. The evidence model

Test items in assessment are usually scored dichotomously, i.e.
either as correct or incorrect. However, problems in constraint-
based tutors, from a psychometric perspective, can be seen as
what is called constructed-response questions [19]. The performance
of students on such problems is difficult to evaluate, as they re-
quire different types of knowledge, skills, or abilities to be applied
(e.g. the design of a laboratory experiment, solving a mathematical
problem, writing a schema summarizing a text, etc.). Assessment
of complex tasks requires more sophisticated mechanisms taking
into account all the knowledge needed to find the solution. The fi-
nal solution in these kinds of tasks is not thus a good indicator of
the students’ knowledge level in the subject matter. When a hu-
man tutor evaluates the student’s performance on a complex task,
he/she not only checks whether or not the solution is correct, but
also explores how the students accomplished the process of solv-
ing the tasks. That is, for the evaluation of that task, several ev-
idences are taken into account in order to compute the score in
it.

In order to overcome the limitations that constructed-response
questions usually have when they are treated like multiple-choice
questions from the assessment point of view, in our proposal those
complex tasks are considered a source of multiple student knowl-
edge (or un-knowledge) evidence. In constraint-based tutors each
problem is linked with a set of constraints representing domain
principles. As a result, students, while solving a problem, are gen-
erating evidence through the constraints they violate or satisfy.
We use such evidence to compute the student knowledge apply-
ing an IRT-based assessment model. The set of constraints con-
stitutes the evaluation submodel. Accordingly, in our evaluation
model constraints are treated as IRT-based items. Constraints and
items have the same nature since they provide evidence on the
student’s declarative knowledge: in IRT, a test item provides evi-
dence about a domain concept being assessed. In the same way,
a constraint provides evidence about a domain principle while
the student is solving a problem. Both constraints and items take
two values that represent the student’s performance, which can
be used as a source of evidence to estimate the knowledge level.
When a student is solving a problem, there will be a set of relevant
constraints, that is, those constraints that could be violated in the
problem. As a result, once the student has solved a problem, we

can get the set of constraints (which are relevant for that problem)
that were (or not) violated.

In the statistical submodel each constraint ¢; will have its own
characteristic curve, P(cj|0), representing the probability of violat-
ing it given the student knowledge level #. Those characteristic
curves are called Constraint Characteristic Curves (CCCs) in analogy
to the IRT ICCs, and through them the kth student knowledge level
P(O|¢, T) can be computed as can be seen with the equation:

m n I
P@1e. ) = TTTT[P(10)" (1 - P(c160) "] (5)
i=1 j=1

In Eq. (5), ¢ =p1.p2. .... Pm represents the set of m prob-
lems solved by the kth student and t =c;,¢p, ..., cn, the set of
all domain constraints. Note that the same constraint can appear in
different problems. Accordingly, r; indicates whether or not the jth
constraint is relevant in the ith problem. Moreover, f;=1 indicates
that the constraint ¢; was violated in the problem p;. Otherwise, f;;
is zero. The student knowledge is expressed as a probability distri-
bution computed as a product of CCCs or their inverse depending
on whether or not the constraint was violated.

5. Constraint characteristic curves calibration

Characteristic curves need to be calibrated before being used for
assessment purposes. As a result of that process, the parameters
of the characteristic curves are calculated. In testing environments,
the original calibration process is done using student performance
results. More concretely, the value of correction or mistake for ev-
ery question and for each student from a sample is needed. The
data needed can be represented with a matrix reflecting the per-
formance of the student, henceforth called the Performance Matrix.
Each row of this matrix is the data of a single student and each
column is the result of a student for all the questions. For example,
the element e;; of the matrix would be the result for the student j
in the question i. The elements can take three values: 1 to repre-
sent positive result (answered correctly); O to indicate a negative
result (an incorrect answer); and another fixed value to indicate
that the question has not been presented to the student.

The process of calibrating can be done using the performance
matrix as input for IRT software such as, for instance, Multilog
[48]. Nevertheless, in the case of the CBM approach, setting up the
values of the elements in the matrix needs to take into account
some principles in order to produce a valid model. These key prin-
ciples arise from the IRT assumptions that must be satisfied in or-
der to produce a valid model and estimates:

1) Local independence of the items being calibrated, meaning that
one item should not provide any information a student could
use to correctly answer another item.

2) Constant knowledge, which establishes that during the test, the
measured latent trait does not change. This hypothesis implies
that the knowledge should be the same for the entire assess-
ment session, i.e. no learning could occur meanwhile.

The previous procedure of estimating characteristic curves can
be applied to calibrate CCCs. In this case, however, the input of
this calibration process is the performance of a student population
who previously solved the set of problems. The performance ma-
trix is composed, therefore, of a row for each student and a col-
umn for each constraint. The three possible values would have the
same meaning: 1 for a positive result (satisfying the constraint), 0
for a negative result (violating the constraint), and another fixed
value for a constraint that has not been relevant to the student’s
solution. The calibration outcome is the set of CCCs. As mentioned,
each one of these curves models the probability of violating a con-
straint given a certain level of knowledge. The shape of a typi-
cal CCC is the exact opposite of an ICC (see Fig. 3). Therefore, it
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would be a monotonically decreasing function since the higher the
knowledge, the lower the probability of violating the constraint.

Regarding the IRT assumptions that have to be fulfilled before
performing the calibration, the first one, i.e. the local indepen-
dence, is satisfied by the CBM itself since the constraints must be
basic and exclusive principles. Nevertheless, the second assump-
tion could be conflicting within ITSs since these types of systems
are made for learning purposes and, in that case, the student’s
knowledge usually changes. In the rest of this section, we will ex-
plore three different strategies (i.e. the “constant knowledge ses-
sions”, the “first time relevant”, and the “problem grouping”) to ap-
proach calibration when available student data do not fulfill the re-
quirement of constant student knowledge. Finally, an example will
be shown to contribute to a better understanding of those three
criteria.

5.1. The “Constant Knowledge session” approach

In our previous work [14,15] good results were achieved by ap-
plying IRT to CBM in problem solving assessment environments.
However, here, we want to go further and design a procedure for
calibrating the CCCs for constraint-based tutors. The challenge is
therefore to be able to calibrate the CCCs for systems aimed not
only at assessment, but also at learning.

To tackle the above-mentioned issue, we designed a new strat-
egy to build the performance matrix by redefining the concepts
of “session” and “student”. Normally, a session takes place when
the student logs into the ITS, carries out some or activities and
then logs out. If the student’s activities in consecutive sessions are
grouped considering those sessions close enough in time, we could
have windows of activity where the knowledge between sessions
could be assumed to be constant or not significantly different. This
concept is what we call a Constant Knowledge session (CK-session).
The time separating any two consecutive sessions in a CK-session
should not be higher than a certain threshold. It can be stated for-
mally in the following way: Let a,; be the moment the last stu-
dent action happened in the ith session (S;); dg;1) the moment
the first action occurred in the (i + 1)th session (S;;1); and Tk a
fixed threshold that represents a period of time where it can be as-
sumed that the knowledge has not changed. If (agi;1) — i) < Te
then, S; and S,y will belong to the same CK-session.

All CK-sessions of a student must be taken into account in the
CCC calibration, since these sessions provide information about dif-
ferent sets of constraints. However, each CK-session represents a
different knowledge state of the student, as stated before, and con-
sidering the whole set of evidence for a student would thus violate
the IRT assumptions. This problem can be tackled by splitting each
different CK-session of a student into separate sessions of different
virtual students. In this way, the set of a student’s CK-sessions could
be turned into a larger set of virtual students, each one having a
different knowledge state. It is important to note that this strategy
avoids inter-session learning, but it is still necessary to bear in mind
the intra-session learning. The intra-session learning can be avoided
by using the students’ evidence of a constraint only the first time
it was relevant and avoiding the learning provided by feedback in-
side the CK-session.

5.2. The “first time relevant” approach

The problem of constant knowledge can be dealt by selecting in
the calibration only those values representing the students’ perfor-
mance that did not result in learning gain. Identifying such values
is relatively easy in those cases it was used evidence from CBM tu-
tors that were designed for assessment purposes. That “first time
relevant” approach takes as evidence only the student performance

the first time the constraint is relevant for the student. This crite-
rion is equivalent to setting the Tgx to be greater than the whole
period where the evidence is being taken. Therefore, we only used
the result of a constraint the first time it could be (or not) violated,
since the principle it models makes sense in the current problem
state. For instance, in the domain of fraction addition, constraints
on computing the least common multiple make sense only when
the student is calculating it.

By considering the first time a constraint is relevant, we are
only taking into account the student’s prior knowledge state, i.e.
the knowledge before learning. Otherwise, if we would also con-
sider what happened the nth time (where n> 1) a constraint was
relevant, we would not be taking into account the fact that a pre-
vious violation of the constraint could have resulted in feedback
which could modify the student’s knowledge state associated with
that constraint. In this way, the performance matrix used for cal-
ibration in the existing experiments was formed by filtering the
values for repeated constraints.

Let us take for example SQL-Tutor. In this CBM system, there
is neither any restriction about the number of attempts per prob-
lem, nor any imposition on the sequence of problems to be solved.
Therefore, the students can have many sessions with the tutor,
whenever they want, and solve as many problems per session as
they like. This means that a constraint can be relevant at differ-
ent times for each student and multiple times, each one reflecting
different knowledge stages. Using this calibration approach of the
first time relevant in systems where students have large sessions,
discards data associated with constraints that are not relevant
for the first time but, however, could be associated with new states
of the student’s knowledge. Missing these data involves redesign-
ing the existing strategy to take into account the student knowl-
edge evolution that occurs over long periods of usage and, in gen-
eral, in any tutoring system. This problem can be solved by com-
bining this approach with the CK-session approach.

5.3. The “problem grouping” approach

The “problems grouping” criterion consists in grouping the ev-
idences by problems, which means that consecutive attempts of a
student to solve a problem are considered to be in the same CK-
session and, thus, conforming to a virtual student. Although this
criterion has a variable value of Tk, because between two differ-
ent problems done by a student there is no fixed amount of time,
we thought it would be interesting to make this distinction to as-
sume knowledge changes only between problems.

5.4. Data filtering

Given that constraints are relevant for specific problems, the
amount of evidence obtained for these constraints will depend on
how often the problems are attempted by students. In domains
with large constraint sets, such as SQL-Tutor, a high level of inter-
action between the students and the system is required in order
to have a homogeneous amount of evidence per constraint. For
this reason, some of the constraints will have a smaller amount
of evidence than others, and, therefore, will produce less accurate
calibration. Taking this into account, we have considered three fil-
tering scenarios:

B Scenario 1: Full data set. This is the basic scenario where con-
straints that were not relevant during a given year, that is, those
that were not included in any of the problems of that year,
were discarded for the calibration process in that year.

B Scenario 2: Discarding constraints which are only rarely rele-
vant. Constraints that were relevant for less than 10% of times
they could have been relevant were discarded.
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Fig. 5. A graphical representation of two students’ performances in an ITS.

B Scenario 3: Discarding constraints with low variability (almost
always violated or always not violated). We also considered
that it would be interesting to explore the effect of discarding
not only constraints with a small amount of evidence, but also
those that were usually violated or usually not violated by stu-
dents when they were relevant to a problem. In this scenario
we discarded the constraints that were violated less than 5% of
the time, and those that were violated more than 95% of the
time.

5.5. An example of use

To provide a better understanding of the proposed criteria, in
Fig. 5 we introduce an example with a small set of eight con-
straints and two students. This figure shows a series of attempts,
each represented by a rectangle labeled Ay, meaning the attempted
number j for problem i. Each attempt has a list of relevant con-
straints, which can be different for two attempts on the same
problem, since the student could have added new elements in the
submitted solution.

In this example, student 1 has made three attempts at prob-
lem 4; then, two attempts at problem 2; next, two attempts
at problem 1; and again two more attempts at problem 4. The
horizontal space between each pair of attempts represents the
time elapsed between them. In this case, three significant spaces
between the four problems solved by student 1 can be observed:
t1, t; and t3. The performance matrices resulting from applying
the different calibration approaches are represented in Fig. 6. The
matrix corresponding to the CK-session approach is created by
grouping the attempts which are not separated by more than a
threshold Tck. In the example presented in Fig. 5, for student 1,
we can see that only t, is higher than the threshold value and,
therefore, two CK-sessions can be considered (CKS; and CKS,),

each one representing a single session of two virtual students
(VS; and VS,). However, for student 2, both t; and t; are higher
than the threshold and, as a result three virtual students are
generated (VS3, VS, and VSs). Finally, in the figure we have
circled those constraints that are relevant for the first time in
a CK-session.

Note that it is possible for the time between two consecutive
attempts a; and a;;+ 1y to be greater than the time between two
attempts in different (but consecutive) problems a; and ay (ie.,
problem h attempted immediately after problem i). In that case,
unless the student had closed the session for some reason, they
are considered as still belonging to the same CK-session as, during
this time, the student is supposed to be working with the system
on a given attempt. For this reason, in the process of identifying
CK-sessions from the data only pauses between different problems
are considered.

Performance matrices corresponding to Fig. 5 according to the
three criteria are given in Fig. 6. There, each column is associated
with a constraint C; and each row to a virtual student. Element e;;
in each matrix has an element Agp, which represents that the per-
formance result of constraint j for the virtual student i was taken
from the attempt number a in the problem p. This result will be
a binary value, 1 or 0, to represent the satisfaction or violation, or
the character x when the constraint has not been relevant during
the session.

Finally, the calibration is performed by applying some IRT
method to the matrix obtained from any of the three approaches.
The result will be the CCCs of all the constraints (more concretely,
the parameters of the probabilistic function selected for model-
ing those curves), as well as the student knowledge estimation of
those individuals whose data were used in the calibration process.
In the study described in the next section, we have used Multilog
software to infer the parameters associated with the logistic func-
tions modeling the characteristic curves.
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Fig. 6. Performance matrix for Fig. 5 according to the different criteria.

6. Method
6.1. Objectives

The aim of this study is to determine which IRT model better
fits in the ITS case and the best criterion to construct the per-
formance matrix. We explore different aspects of the calibration
process with the input data from learning environments. The chal-
lenge is to analyze the best strategy to optimize the calibration re-
sults according to the aspect studied. More concretely, we analyze
different aspects of calibration, trying to answer the following four
questions:

1 Which IRT model best fits the datasets? In this sense, we analyze
the most extended models for modeling characteristic curves,
i.e. 1PL, 2PL and 3PL in order to see which one best fits data
for our ITS.

2 Which is the best strategy to filter raw data for the performance
matrix and reduce noise? In the next section we introduce three
filtering criteria for this purpose. We explore which one leads
to the best calibration of performance results.

3 Which is the best strategy for grouping data? We also explore
several strategies for grouping data from different students’
samples. In learning environments data collection is usually
performed incrementally and this fact needs to be taken into
account to guarantee that calibration is accomplished suitably.

4 When using the CK-session approach, how should be the Tck
threshold value? As explained CK-session criterion can be con-
figured in terms of the threshold considered. In this section we
study how the selection of the T value influences the calibra-

tion performance. That is, our study is focused on analyzing the
value for which the Tex can produce a more accurate calibration
of constraints.

6.2. Participants

The data considered in this study were obtained from a total
of 197 students that used SQL-Tutor as a ITS at the University of
Canterbury, New Zealand: 39 students in 2008, 98 in 2009, and 60
in 2010. A first filtering process removed data about 15 students
from 2009 and 6 students from 2010 due to their low activity in
the system.

Students worked with SQL-Tutor over the course and solved as
many problems as they wanted. That generates a huge amount of
data in terms of constraints. Different problems were included in
each instance of the course, and the set of constraints was mod-
ified from 2008 to 2009. Some constraints were the same, some
were removed and new ones were added. In this situation, we de-
cided to calibrate the models independently for each year. This de-
cision also allows an analysis of the consistency of the comparison
results, which should not differ from one year to the next.

6.3. Procedure

We have assembled the data of each year according to the three
filtering scenarios, resulting in 9 initial datasets. Each dataset was
extracted from two output files generated by SQL-Tutor with in-
formation about the student model. One of those files contained:
(1) the list of the problem identifiers solved by the student; (2)
for each constraint, the number of times it was relevant; (3) the
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Table 1 Table 2a
Number of constraints involved in each scenario. Average negative-twice-the-loglikelihood values by IRT model and year.
Filtering scenario 2008 2009 2010 IRT model 2008 2009 2010 Average
S1 493 502 480 1PL 4019.04 7852.47 3541.52 5137.68
S2 429 386 357 2PL 3472.58 7094.42 3214.04 4593.68
S3 300 478 346 3PL 3484.96 6993.40 3254.08 4577.48
Average 3658.86 7313.43 3336.55 4769.61
list of trials, i.e. the problems in which the constraint was pre-  Table2b - A A
sented; and (4) whether it was violated or not. The other file was Average negative-twice-the-loglikelihood values by IRT model and filtering scenario.
a log file that included the problem selected by the student and IRT model S1 S2 S3 Average
the date when it was chosen. Also included was the set of con-

. . . 1PL 6144.41 6050.18 3218.44 5137.68
straints that were relevant each time the solution was corrected, 2PL 552028 5419.03 2841.73 4593.68
the date when it happened and whether or not they were vio- 3pL 551031 539714 2824.99 4577.48
lated. We developed a procedure for combining these two files Average 5725.00 562211 2961.72 4769.61
and generating a dataset containing the set of problem identifiers
solved by the student, their relevant constraints, their violations, Table 2¢

and their timestamps. The 9 datasets produced 54 different per-
formance matrices applying the 6 different grouping criteria ex-
plained in the previous section (4 CK-session criteria with differ-
ent thresholds, 1st-time-relevant, and problem grouping). Finally,
the CCCs calibration was carried out for each of the three differ-
ent IRT models, i.e.,, 1PL, 2PL and 3PL. Finally, the computation was
performed using Multilog [47]. The whole process of filtering the
initial dataset, generating the performance matrices and calibrating
them with Multilog, could not be done manually due to the dimen-
sion of the data. They were carried out using an auxiliary Java ap-
plication that performed each step and applied the different factor
combinations.

As a result, we obtained a total of 3x3x6x3=162 sets of
calibrated CCCs. In order to evaluate the quality of every result-
ing characteristic curve dataset, we took the negative-twice-the-
loglikelihood. This value is twice the log of likelihood function;
the lower its value, the better the fit of the dataset [17]. The
negative-twice-the-loglikelihood is commonly used as a measure
of the goodness of fit for the parameters representing every char-
acteristic curve [11]. It is one of the output values produced by
Multilog.

With respect to the CK-session criterion, the data from stu-
dents who made at least one attempt were used to calibrate the
constraints using different values of the threshold, Tk, to gener-
ate the virtual students. Precisely, Tk was determined to be 10,
5, 3 and 1 min. The main reason to choose these low values was
that learning takes place when the student is solving a problem,
and therefore, knowledge does not remain constant for long. It
should be noted that the higher the T, the lower the number
of CK-sessions, and thus, the amount of data for calibration is re-
duced. On the other hand, if we consider a low T, the CK-sessions
could be too short, that is, containing only a few constraints and,
thus, reducing calibration quality. For this reason, experiments con-
ducted serve to determine the most appropriate value of Tc.

7. Results
7.1. IRT models

In order to determine the model that best fits the data, we
have compared the value obtained for the negative-twice-the-
loglikelihood in the 162 calibrations. Table 1 shows the number of
constraints involved in each filtering scenario for each year.

To compare two values of the negative-twice-the-loglikelihood,
we have to find out the degrees of freedom of the x?2 distribu-
tion, which depends on the number of parameters involved in
each model (see Section 2.3.). For instance, between 1PL and 2PL,
for a given year, the difference is exactly the same as the num-

Average negative-twice-the-loglikelihood values by IRT model and grouping strat-
egy.

IRT CK CK CK CK 1st-

model (10 min) (5min) (3min) (1min) time Problem Average
1PL 6390.08 654091 6693.37 6873.27 334036  988.09 5137.68
2PL 6073.51 617712 6305.77 6424.66 3279.29 -698.26 4593.68

3PL 6096.12 6210.83 6344.43 644749 3243,87 -877.88 4577.48
Average 6186.57 6309.62 6447.86 6581.80 3287,84 —196.01 4769.61

ber of constraints, because each 2PL curve has and additional pa-
rameter. The number of constrains varies from one year to an-
other and depends on the filtering scenario, (see Table 1), so for
example, for the year 2008, and scenario 3, we should consider
x% with 300 degrees of freedom (x2(300) = 325.40 for p=0.05)
and compare the negative-twice-the-loglikelihood value obtained
in the calibration of the 1PL model for that year using a given
grouping strategy with the equivalent data obtained from calibra-
tion of 2PL model. On the other extreme, considering filtering sce-
nario 1 in the year 2009, will lead to 502 degrees of freedom,
which means (x2(500) = 553.13 for p=0.05). As an approximation
we can say that in the average case a difference in the negative-
twice-the-loglikelihood values greater than 400 will indicate a sta-
tistically significant difference (p < 0.05).

Tables 2a-2c show these values across different combination of
the other conditions. Each value in Tables 2a and 2b is the average
of the value obtained in 18 calibrations. Each value in Table 2c is
the average of 9 calibrations.

According to this reasoning, we can conclude that 1PL produced
a calibration with significantly lower quality than the other two
regardless of the other conditions. Nevertheless, we could not find
any significant difference between the 2PL and 3PL models. More-
over, following a random pattern, sometimes 3PL was better and,
at other times, 2PL was better. This suggests that for calibration of
constraints, a 3PL model or 2PL perform similarly, but 1PL is not
suitable. This is not a surprise, since the difference between 2PL
and 3PL is just the guessing factor. Guessing factor applies when
the student can solve an item just by random selection, such as a
multiple choice item, but it makes no sense talking about guessing
for a constraint, since possible outcomes (satisfaction or violation)
cannot be randomly selected. As a result, the 2PL model is chosen.

7.2. Filtering scenarios

Tables 3a and 3b contain the average of the negative-twice-the-
loglikelihood values by year and grouping method respectively. In
this case only data from 2PL RT model have been used, because
these have been found to be the most accurate in the previous
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Table 3a Table 5
Average negative-twice-the-loglikelihood values by filtering scenario and year. Average negative-twice-the-loglikelihood values by grouping strategy and year.
Scenario 2008 2009 2010 Average Grouping strategy 2008 2009 2010 Average
S1 5078.47 7850.67 3631.72 5520.28 CK (10 min) 3278.80 8168.30 3461.50 4969.53
S2 5032.78 7725.33 3498.97 5419.03 CK (5 min) 3217.80 8242.00 3459.20 4973.00
S3 306.48 5707.27 2511.45 2841.73 CK (3 min) 3224.00 8335.50 3506.30 5021.93
Average 3472.58 7094.42 3214.04 4593.68 CK (1 min) 2452.10 8394.40 3627.40 4824.63
1st time 1997.60 4591.40 2403.50 2997.50
Problem —12331.40 —3488.00 —1389.20 —5736.20
Average 306.48 5707.27 2511.45 2841.73
Table 3b

Average negative-twice-the-loglikelihood values by filtering scenario and grouping
strategy.

Scenario CK (10 min) CK (5 min)CK (3 min)CK (1 min) 1st-time Problem Average

S1 6668.93  6844.77 701047 7288.60 3420.03 1888.90 5520.28
S2 6582.07 6713.60 6884.90 7160.73  3420.33 1752.53 5419.03
S3 4969.53  4973.00 502193 4824.63 2997.50 —5736.202841.73
Average 6073.51 617712  6305.77 6424.66 3279.29 —698.26 4593.68

Table 4

Number of virtual students involved in each grouping strategy.
Grouping strategy 2008 2009 2010
CK (10 min) 167 293 171
CK (5 min) 190 308 175
CK (3 min) 215 323 178
CK (1 min) 338 370 192
1st time 39 83 54
Problem 1542 1976 938

subsection. Each value in these tables is the average of 6 and 3
values respectively.

Comparing the different scenarios, the latter gives a better
result, which suggests that filtering some constraints that are
relevant very often is also a good criterion. This issue is especially
apparent in the 2008 dataset, where some of the constraints
were always relevant, which made them unsuitable for calibration
(some positive or negative evidence should occur to produce
a suitable calibration result). The filtering of those constraints
drastically improved the quality of the calibration.

Note that to compare two filtering scenarios the degrees
of freedom of the x2 distribution should be determined de-
pending on the model, for the 2PL model the different num-
ber of constraints between filtering scenarios S2 and S3 leads
to a 2x129=258 additional parameters (x2(250) = 287.88 for
p=0.05). The results indicate that the conclusions are very signifi-
cant with p << 0.05

Moreover, the quality of the resulting datasets in each filtering
scenario could be related to the number of constraints involved in
it. Following this hypothesis, the quality of the constraints should
be higher in larger datasets since the fitting error would be lower
due to a larger number of evidence. Nevertheless, as we can see in
Table 1, that is not true: filtering scenario 3 has fewer constraints
than filtering scenario 2 but the quality is higher (see Table 3a),
which suggests that the filtering criteria actually remove from the
study those constraints that do not provide important information.

7.3. Grouping strategy

According to the grouping strategy the number of students
varies from one condition to another (see Table 4). More stu-
dents implies more parameters (1 by each student), and the higher
the number of parameters, the lower expected negative-twice-log-
likelihood. Once again, we use the x?2 distribution to determine if
these differences are significant.

Table 5 shows the average negative-twice-the-loglikelihood val-
ues for the 18 calibrations that used the 2PL IRT model applying
conditions of filtering scenario S3. The first four rows correspond
to the CK-session grouping strategy with different T threshold
values, while the other two corresponds to the “first time relevant”
method and the grouping by problems criteria, respectively.

With respect to the best way to construct the performance
matrix, the “first time relevant” grouping criterion performs bet-
ter than any other CK-session strategy, irrespective of the Tx val-
ues. The results are very significant with p << 0.05. In general, the
lower the Tgg value, the better the calibration quality, but these
results are not always significant.

However, the grouping by problems criterion outperforms the
“first time relevant” grouping criterion. Even considering the
higher degrees of freedom for the x?2 distribution, ()x2(1000) =
1074.68 for p=0.05), the results indicate that this strategy leads
to statistically significant IRT model fit.

These results could be explained by the fact that the method
of grouping constraints by problems produces a larger number of
virtual students. This implies that our CK-session method is not
appropriate for calibration independently of the T values. Instead,
the original approach of “the first time relevant” is a better option.
The idea of the CK-session is a too coarse-grained methodology to
be used in the calibration process of CBM+IRT and, thus, a more
fine-grained one, such as the grouping of evidence by problems
produces better-quality calibration.

8. Conclusions

Assessment is an important part of any learning process since it
is used as a way to determine the starting knowledge state of the
student, how this knowledge evolves during the instruction and,
at the end of this process, to compute the level of achievement.
In computer-based educational research, one of the challenges
is the construction of problem-based environments. Automatic
assessment of these kinds of tasks (i.e. the problems or complex
exercises) is complicated due to the complexity of the knowledge
required to be applied by the student. The combination of CBM
and IRT can be used as a well-founded approach for this type of
assessment.

When the technique is applied to the data of a CBM system for
learning purposes with a large number of students using the sys-
tem and multiple sessions over long periods of time, some limita-
tions have to be taken into account. The main limitation is related
to the way in which characteristic curves are calibrated. Calibration
is an important previous stage when assessment is accomplished
with data-driven theories such as IRT. One of the requirements of
IRT to accomplish calibration is to have available datasets of stu-
dents’ performance where the knowledge of each individual had
to be kept constant. This means that during the process of collect-
ing this information, no learning could happen. This requirement is
difficult to satisfy when data is taken from learning environments.

To study the applicability of different calibration strategies in
a real environment, we used log data from SQL-Tutor collected
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over three years. To guarantee that this principle is met we have
introduced two concepts, i.e. the “CK-session” and the “virtual
student”, and described three grouping strategies to construct per-
formance matrices from the raw data obtained from the ITS to be
used to calibrate the IRT models. Additionally, some data filtering
was needed to reduce the “noise” of the data obtained from a ITS.
The main conclusion is that better results are obtained by discard-
ing constraints with low variability, and that the IRT models are
better adjusted if we consider a “virtual student” for each reso-
lution of a single problem in the ITS. Gathering evidence through
problems would produce higher-quality CCCs during the calibration
phase.

In addition, we have explored the performance of the three
most commonly used IRT models. The goodness of model fit has
been measured using the output of the Multilog tool with different
combinations of assembling criteria. The results suggest that the
2PL model is the most suitable to for use with CBM constraints in
all cases, and that there is no reason to use the 3PL model, which
requires more data to be calibrated and fails to provide any signif-
icant improvements.

In order to implement any of these calibration approaches in
future ITS the conclusions obtained in the study presented here
could be taken into account as a guideline. The utilization of these
techniques produces a more accurate calibration of the basic ele-
ments of the system knowledge base, the CCCs. Furthermore, we
would like to explore the performance of this methodology in an
ITS to study the improvement in terms of learning that this ap-
proach could provide.
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