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Abstract. This paper is a first attempt to relate quantitative, unidimensional mod-
els to the fine-grained models usually found in the AI-ED community. More con-
cretely, we define a certain type of qualitative student models that take into account
the strict prerequisite relation, and show how a quantitative model arises from it in
a natural way.

1. Introduction

In AI-ED literature, we can find proposals to model a student by means of comprehen-
sive, fine-grained structures taking into account, for example, bug libraries, mental mod-
els, episodic memory, or learning preferences and styles. These rich,qualitativestruc-
tures are usually difficult to initialize and update for a given student.

The very opposite approach is to model the student by just a real numberθ (per-
formance measure, in the terminology of [4]). In many real situations (for example, as-
signing students to groups), students are ranked in function of the results of a test and
then the tutorial action is selected. At least as a first approximation, some systems use
such an approach, directly or defining fuzzy labels onθ (the system KNOME[1] could be
conceptualized in this way). Needless to say, the advantages of suchquantitativemodels
arise from the existence of well-founded mathematical techniques that allow their easy
computation and updating.

A richer model makes feasible a better ITS. However, a more careful consideration
shows that this is not always the case [4], [5], [8]. To cite J. Self, “it is not essential
that ITSs possess precise student models, containing detailed representations of all the
component mentioned above, in order to tutor students satisfactorily” [5]. In fact, “a
student model is what enables a system to care about a student” [6], so “there is no
practical benefit to be gained from incorporating in our student models features which
the tutoring component makes no use of” [5]. On the other hand, it is clear that just a
real number will be seldom a powerful model for tutoring; even for assessment tasks,
the increasing interest in formative assessment creates the “. . . challenge of converting
each examinee’s test response pattern into amultidimensionalstudent profile score report
detailing the examinee’s skills learned and skills needing study” (our emphasis) [7].
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So a trade-off is needed between the expressive richness of a model and the easi-
ness of its creation and maintenance; and this trade-off will be governed by the gains in
“tutoring power” vs. the losses in “creation and updating costs.”

The research here presented addresses some of these problems. To this end, we will
define a fine-grained structure for modeling student’s knowledge and show how a quan-
titative unidimensional model can be suitably defined from it (section 2). Then we apply
this theoretical framework to certain simple cases (section 3) that are amenable to explicit
analytical techniques and to more complex cases whose study demands simulation tools
(section 4). Finally, the conclusions drawn are summarized and future lines of research
are sketched.

2. Theoretical Framework

A domainD is a directed acyclical graphD(K, A) whereK —the set of nodes— is
the set ofknowledge atomsandA —the set of arcs— is theprerequisite relation, i. e.,
ki → kj when the knowledge atomkj cannot be mastered without mastering the atom
ki. Notice that, in this way, we are considering onlyconjunctiveprerequisites. We will
denote byN the cardinality ofK, i. e., the number of knowledge atoms in the domain.

Given a domainD, a qualitative student modelC (in the following, amodel) is a
subset ofK such that, ifki ∈ C and(kj , ki) ∈ A, thenkj ∈ C, i. e., a subset ofK that
satisfies the constraints posed by the prerequisite relation. Notice that we are considering
only binary valued for the mastering of a knowledge atom, i. e., for eachki, the student
knows totally/does not know the atom.

Let C1, C2 be two models.C1 is a father ofC2 (or, alternatively,C2 is a son ofC1)
whenC1 ⊆ C2 andcard(C1) = card(C2)−1, i. e.,C1 is a father ofC2 whenC2 can be
generated by adding just an atom toC1 in a way allowed by the prerequisite constraints.
We will denote byσ(C) the number of sons ofC and byF (C) the set of fathers ofC.

The weightw(C) of a a modelC is defined recursively as follows:

w(C) =

{
1 if C = ∅∑

Ci∈F (C)
w(Ci)
σ(Ci)

otherwise

Notice that for each modelC, 0 ≤ w(C) ≤ 1, and that for eachm, 0 ≤ m ≤ N ,

∑

card(C)=m

w(C) = 1.

Perhaps an example will clarify the meaning of these definitions. Let us consider the
domain of the figure 1(a). There are 6 atoms. Atoms A and B are prerequisites of C; atom
B is prerequisite of D; atoms C and D are prerequisites of E; and atom D is prerequisite
of F. There are 13 possible models. Their cardinalities and weights are summarized in
figure 1(b).

Given a domainD, a quantitative unidimensional modelP is a real number. It can
be termed the student’sknowledge level.

Now we want to define a function from models into knowledge levels, i. e., a function
f : 2K → <. Some properties are intuitively desirable for the intended functionf .
For example, given a domain,f must be strictly monotonic, i. e, ifC1 ⊂ C2, then
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C atoms inC card(C) w(C)
C1 0 1
C2 A 1 1/2
C3 B 1 1/2
C4 A, B 2 3/4
C5 B, D 2 1/4
C6 A, B, C 3 3/8
C7 A, B, D 3 4/8
C8 B, D, F 3 1/8
C9 A, B, C, D 4 11/16
C10 A, B, D, F 4 5/16
C11 A, B, C, D, E 5 11/32
C12 A, B, C, D, F 5 21/32
C13 A, B, C, D, E, F 6 1

(a) (b)

Figure 1. A toy domain (a) and its models (b).

f(C1) < f(C2), i. e, if the student knows more atoms, then his knowledge level is
greater. The most obvious way is definingf as the count of known atomscard(C),
normalized into the common interval[0, 1] and spread along all the real line, for example
by means of the antilogistic function:

f(C) = θC = log
card(C)

N

1− card(C)
N

; card(C) = n(θ) = N
1

1 + e−θ

Notice thatf takes a finite number of values, namely,N + 1. WhenC = ∅, θC =
−∞; whenC = K, θC = ∞.

Let us assume that observable behavior consists of answers to certain questions,
calledtest items. The relationship betweenθC and each test itemTi is given by anItem
Characteristic Curve, ICC, such thatICCi(θ) is the probability of giving a right answer
to Ti if the student’s knowledge isθ. To simplify the exposition, let us assume that every
test itemTi depends just on one knowledge atomkj . Let us also assume that there are
neither slips nor guesses, i. e., that a studentS answers correctlyTi if and only if kj ∈
CS , whereCS is the model corresponding toS’s present knowledge. ThenICCi(θ) is
simply the probability of mastering the knowledge atomkj given that the knowledge
level isθ. The usual expression for an ICC whit no slip nor guess is the logistic function
(see, for example, [2])

ICC(θ) =
1

1 + e−a(θ−b)

whereb is the item difficulty level, such that whenθ = b, thenICC(θ) = 1/2; anda
is the item discrimination factor, such that whenθ = b, dICC/dθ = a/4. Obviously,
everyICCi(θ) is monotonic.

For our models, a very naive approach would be to defineICCi(θ) as follows: (i)
count the numberN(θ) of modelsC whose cardinality isn(θ); (ii) count the num-
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θ −∞ -1.609 -0.697 0.000 0.693 1.609 ∞
ICC1 0.000 0.500 0.750 0.875 1.000 1.000 1.000

ICC2 0.000 0.500 1.000 1.000 1.000 1.000 1.000

ICC3 0.000 0.000 0.000 0.375 0.625 1.000 1.000

ICC4 0.000 0.000 0.250 0.625 1.000 1.000 1.000

ICC5 0.000 0.000 0.000 0.000 0.000 0.312 1.000

ICC6 0.000 0.000 0.000 0.125 0.375 0.687 1.000

Table 1. Values of theICCs for the domain of figure 1.

ber N1(θ, ki) of modelsC whose cardinality isn(θ) andki ∈ C; then,ICCi(θ) =
N1(θ, ki)/N(θ). However, this definition leads to nonmonotonic functions, i. e., it is
possible thatθ1 ≤ θ2 and N1(θ1, ki)/N(θ1) > N1(θ2, ki)/N(θ2). consider for ex-
ample a domain with atoms{A,B,C, D} and arcs{(B, C), (B, D)}. There are two
models of cardinality 1:C1 = {A} and C2 = {B}. A ∈ C1 but A /∈ C2, hence
N1(θ1, A)/N(θ1) = 1/2. However, there are three models of cardinality 2:C3 =
{A,B}; C4 = {B, C}; andC5 = {B, D}. A ∈ C3 butA /∈ C3 andA /∈ C4. Therefore,
N1(θ2, A)/N(θ2) = 1/3.

In fact, the real definition must take into account the different “likelihood” of every
modelC. We will adopt the following definition: letΘi be the set of modelsC such
that card(C) = n(θ) andki ∈ C. ThenICCi(θ) =

∑
C∈Θi

w(C). In this way, the
“likelihood” of a modelC is given by the relative number of paths of learning that can
lead from the empty state of knowledge to the state represented byC. It is easy to show
that0 ≤ ICCi(θ) ≤ 1 and that the function so defined is monotonic.

For example, let us show the values ofICCi(θ) for the atoms in the domain of figure
1(a). Let us consider atom 1. Forθ = −∞, i. e., n(θ) = 0, there is just a model (the
empty one,C1 in table 1(b)) and1 /∈ C1, henceICC1(−∞) = 0. For n(θ) = 1, i. e.,
θ = −1.609, there are two models,C2 andC3, with equal weight 1/2. Since1 ∈ C2 but
1 /∈ C3, ICC1(−1.609) = 0.5. Forn(θ) = 2, i. e.,θ = −0.697, there are two models,
C4 andC5, w(C4) = 3/4, w(C5) = 1/4. Since1 ∈ C4 but 1 /∈ C5, ICC1(−0.697) =
0.75. In this way we can compute the values given in table 1.

3. Some Simple Cases

3.1. Lineal Domains

In the simplest cases, it is possible to derive analyticallyICC(θ) and study its relation-
ship to the features of the qualitative underlying model. For example, let us assume that
the domain is lineal, i. e., that knowledge atoms are totally ordered,

k1 → k2 → k3 → . . . → kp

In this case, there is exactly one modelCj for each possible cardinalityj (therefore, its
weight is 1) andki ∈ Cj if and only if i ≤ j. Therefore,

ICCi(θ) =
{

0 if θ ≤ log i
p−i

1 otherwise
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This is a degenerated logistic function witha = ∞ andb = log i
p−i . In other words,

the difficulty of ki is log i
p−i and its discrimination is∞. Let us assume now that a test

itemTj requires the knowledge ofseveralknowledge atomskj1 , . . . , kjm
. ThenICCTj

is justICCjm , i. e., the shape of the function is the same and the parameters are those of
the most difficult knowledge atom.

Notice that in such domains given the knowledge levelθ, for every knowledge atom
kj we can decide ifkj is known by the student. In this case, if we represent in the model
the concrete atoms known by the student there is no gain of information; the quantitative
model is an exact representation of the fine-grained one.

3.2. Flat Domains

Let us assume now that the domain is totally flat, i. e., there are no prerequisites. In
this case, there are exactly

(
N
j

)
models for each possible cardinalityj. Obviously, their

weights are equal to1/
(
N
j

)
. From these models,

(
N−1
j−1

)
contain a certain atomi. There-

fore, allICCs are the sameICC and

ICC(θ) =

(
N−1

n(θ)−1

)
(

N
n(θ)

) =
n(θ)
N

=
1

1 + e−θ

This is a logistic function witha = 1 and b = 0. In other words, the difficulty of
every item is 0 and the discrimination is 1 (or 1/1.7, depending on the normalization
adopted). On the other hand, let us assume now that a test itemTj requires the knowledge
of several knowledge atomskj1, . . . , kjm. Analogously we can prove thatICC(θ) =
n(θ)(n(θ)−1)...(n(θ)−m+1)

N(N−1)...(N−m+1) and whenN →∞, ICC(θ)→ 1
(1+e−θ)m . This is not the usual

logistic function; however, if we define the difficulty levelb as the value ofθ such that
ICC(θ) = 1/2, thenb = log 1

m√2−1
; and, if we define the discrimination factora as 1/4

times the slope at that point, thena = m(2− m
√

2).
Notice that “the IRT model, in and of itself, simply does not address the question of

why some items might be more or less difficult than others” ([3], p. 30); and the same
could be asserted about the differences in the discriminating power between different
items. However, in flat domains, our approach explain the real nature of these param-
eters: both difficulty and discrimination are monotone functions of the numberm of
atoms required to answer the test item. On the other hand, both parameters are assumed
independent in IRT theory. If our analysis is correct, it is not the case for flat domains.

4. Some Simulations

For more realistic domains, it becomes impossible to explicitly obtain expressions for
response curves. We have developed a simulation tool in order to study empirically the
quantitative approximations in those models. With this tool we can define domains struc-
tured in levels. Each level contains a number of knowledge atoms. For each atom at a
level i, its direct prerequisites are placed at the leveli − 1. Every atom (for leveli > 1)
has at least one prerequisite.

Different possibilities are allowed by the tool. For example, we can input a given
domain with all its nodes and arcs. On the other hand, we can generate a domain at ran-
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Figure 2. Real and logistic ICC.

dom, giving as input (i) the number of levels; (ii) for each level, the number of atoms;
and (3) for each level, the expected number of prerequisites of an atom. In any case, the
domain is processed by (i) computing all possible models and their weights; (ii) count-
ing the presence/absence of each atom in each model; (iii) compiling the corresponding
ICCs for each knowledge atom. Since the number of domains grows —in general— in
an exponential way, this process can be very expensive in space and time. For example,
for the domain used to generate the plots shown in this section, there are 50 atoms but
62515 domains (a big number, but distant from250, the total number of subsets.) The
domain consist of 50 knowledge atoms structured in 5 levels of 10 atoms. The number
of prerequisites for each atom is at least 1 and its expected value is 3.

Figure 3. Average error vs. atom level.

The graphics in this section display the relation between some magnitudes in this
domain. The aim of the graphics is just showing the kind of problems we are addressing
and the kind of answers we are looking for. No claims of generality are made about the
hints or tendencies shown by the figures. Not even a statistical analysis of the significance
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of the data has been performed; in fact, it must wait until a more exhaustive battery of
simulations had been performed.

The first issue we want to study is the adequacy of usual logisticICCs to response
curves empirically found. Since we are considering that the response to a test item is
deterministically given by the mastery of one knowledge atom, there are 50 response
curves, one for each knowledge level. In figure 2 a real ICC is shown and compared to
the its best (2 parameter) logistic approximation. The fitness seems good. More formally,
the mean value of the quadratic error for the 50 curves is 0,1233.

However, the error is not the same for all atoms. The atom displayed in figure 2 lies
“at the middle” of the domain. It can be studied, too, the relation between the level of the
atom and the mean error. The results are shown in figure 3. The error is greater for the
levels placed at the beginning or at the end of the domain.

Figure 4. Discrimination vs. difficulty.

Another issue is the study of the correlation between the difficulty and the discrimi-
nation of an item. As said in section 3, both parameters are assumed independent. How-
ever, figure 4 shows that perhaps it is not the case in real domains.

5. Conclusions and Future Work

We have defined a certain family of qualitative, fine-grained student models. These mod-
els, simple as they are, take into account the prerequisite relation. We have derived a
quantitative model from the qualitative one and shown how the response curves can be
derived. The derivations have been done analytically for some simple cases and by means
of simulations in more complex cases.

A lot of work must be done along these lines, with the final aim of determining in
which cases quantitative models could be a sensible choice.
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